Advertisement

Geochemistry International

, Volume 56, Issue 8, pp 842–856 | Cite as

Assessment of the Ecological State of the Arctic Freshwater System Based on Concentrations of Heavy Metals in the Bottom Sediments

  • V. A. Dauvalter
  • N. A. Kashulin
Article
  • 19 Downloads

Abstract

The ecological state of the Inari Lake–Pasvik River system, the largest in northern Fennoscandia (in the near-border territories of Russia, Norway, and Finland) was assessed based on studying concentrations of heavy metals (HM) in the bottom sediments (BS). The water body (Kuetsjarvi Lake) contaminated with liquid wastes from the Pechenganickel smelter contains the highest HM (Ni, Cu, Co, Zn, Pb, Cd, Hg, and As) concentrations in the uppermost BS layers. In water bodies down and up the Pasvik River of the discharge site of waste waters from the smelter, the uppermost BS layers do not contain elevated concentrations of contaminating HM typical of the area (Ni, Cu, Co, Zn) but do contain higher concentrations of chalcophile elements (Pb, Cd, Hg, and As), which come mostly from trans-border sources. In the lakes receiving domestic wastes, phosphorus concentrations increase up the vertical section of the BS, which may suggest the development of eutrophication processes. They result in reducing conditions in the bottom waters and uppermost BS layers and, consequently, the transfer of ionic species of elements susceptible to variations in the redox potential from BS to waters. This process leads to depletion of the uppermost BS layers, first of all, in Fe and Mn and also in HM adsorbed on the surface of Fe and Mn oxides and hydroxides. In the water bodies that have preserved their oligotrophic nature, the uppermost BS layers were determined to accumulate Fe and Mn, whose concentrations are up to 50 times higher than the Earth’s crust average and the background values. Quantitative parameters of the factors and degrees of contamination are determined, as also are the ecological risk indexes for the contamination of the water bodies with HM, using the L. Håkanson method adapted to the regional conditions. The nonessential metals Hg and Cd, which are the most toxic and dangerous for hydrobionts, are determined to be the most ecologically hazardous in all of the water bodies. Nickel is a highly ecologically hazardous element in a single water body: Kuetsjarvi Lake. In all other water bodies of the Inari Lake–Pasvik River system, elements emitted and discharged by the smelter (Ni, Cu, Co, Pb, and As) are moderately and low ecologically hazardous for the aquatic systems.

Keywords

bottom sediments Pasvik heavy metals contamination ecological state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. M. Bazova, “Specifics of the elemental composition of waters in environments with operating mining and oreprocessing plants in the Kola North,” Geochem. Int. 55 (1), 131–143 (2017).CrossRefGoogle Scholar
  2. V. A. Dauvalter, “Metal concentrations in sediments in acidifying lakes in Finnish Lapland,” Boreal Environ. Res. 2, 369–379 (1997).Google Scholar
  3. V. A. Dauvalter, “Pollution of bottom deposits of the Pasvik River drainage area by heavy metals,” Geoekologiya, No. 6, 43–53 (1997).Google Scholar
  4. V. A. Dauvalter, “Concentration of metals in bottom sediments of acid lakes,” Water Res. 25 (3), 328–335 (1998a).Google Scholar
  5. V. A. Dauvalter, “Heavy metals in the bottom sediments of the Inari–Pasvik lake–river system,” Water Res. 25 (4), 494–500 (1998b).Google Scholar
  6. V. A. Dauvalter, Extended Abstract of Candidate’s Dissertation in Geography (IVP RAN, Moscow, 1999)Google Scholar
  7. V. A. Dauvalter, “Chemical composition of bottom deposits of subarctic lake under the influence of mining metallurgy,” Izv. Akad. Nauk SSSR, Ser. Geograf., 4, 65–73 (2002).Google Scholar
  8. V. A. Dauvalter, “Impact of mining and refining on the distribution and accumulation of nickel and other heavy metals in sediments of subarctic lake Kuetsjärvi, Murmansk region, Russia,” J. Environ. Monitor. 5 (2), 210–215 (2003).CrossRefGoogle Scholar
  9. V. A. Dauvalter, “Chalcophile elements (Hg, Cd, Pb, and As) in bottom sediments of water bodies of the White Sea catchment area on the Kola Peninsula,” Geochem. Int. 44 (2), 205–208 (2006).CrossRefGoogle Scholar
  10. V. A. Dauvalter, Geoecology of Bottom Deposits of Lakes (Murmansk. Gos. Tekhn. Univ., Murmansk, 2012) [in Russian].Google Scholar
  11. V. A. Dauvalter and B. P. Ilyashuk, “Conditions of formation of ferromanganese nodules in the bottom sediments of lakes in the Baltic Shield,” Geochem. Int. 45 (6), 615–619 (2007).CrossRefGoogle Scholar
  12. V. A. Dauvalter and N. A. Kashulin, “Chalcophile elements (Hg, Cd, Pb, As) in Lake Umbozero, Murmansk Province,” Water Res. 37 (4), 497–512 (2010).CrossRefGoogle Scholar
  13. V. A. Dauvalter and N. A. Kashulin, Biogeochemical Peculiarities in Distribution of Chalcophile Elements (Hg, Cd, Pb, As) in the Basins of the Nortehrn European Russia (MGTU, Murmansk, 2015) [in Russian].Google Scholar
  14. V. Dauvalter and S. Rognerud, “Heavy metals pollution in sediment of the Pasvik River drainage,” Chemosphere 42 (1), 9–18 (2001).CrossRefGoogle Scholar
  15. V. A. Dauvalter, N. A. Kashulin, J. Lehto, and J. Jernström, “Chalcophile elements Hg, Cd, Pb, As in Lake Umbozero, Murmansk Region, Russia,” Int. J. Environ. Res. 3 (3), 411–428 (2009).Google Scholar
  16. U. Förstner, “Lake sediments as indicator of heavy-metal pollution,” Naturwissenschaften 63, 465–470 (1976).CrossRefGoogle Scholar
  17. D. Gregurek, F. Melcher, V.A. Pavlov, C. Reimann, and E. F. Stumpf, “Mineralogy and mineral chemistry of snow filter residues in the vicinity of the nickel-copper processing industry, Kola Peninsula, NW Russia,” Mineral. Petrol. 65, 87–111 (1999).CrossRefGoogle Scholar
  18. L. Håkanson, “An ecological risk index for aquatic pollution control–a sedimentological approach,” Water Res. 14, 975–1001 (1980).CrossRefGoogle Scholar
  19. J. Ingri, L. Pekka, V. Dauvalter, I. Rodushkin, and E. Peinerud, “Manganese redox cycling in Lake Imandra: impact on nitrogen and the trace metal sediment record,” Biogeosci. Discuss. 8 (1), 273–321 (2011).CrossRefGoogle Scholar
  20. J. Jernström, J. Lehto, V. A. Dauvalter, A. Hatakka, A. Leskinen, and J. Paatero, ”Heavy metals in bottom sediments of Lake Umbozero in Murmansk Region, Russia,” Environ. Monit. Assess. 161 (1–4), 93–105 (2010).CrossRefGoogle Scholar
  21. N. A. Kashulin, V. A. Dauvalter, S. S. Sandimirov, N. E. Ratkin, P. M. Terent’ev, I. M. Koroleva, O. I. Vandysh, and L. P. Kudryavtseva, Anthropogenic Changes of Lothic Ecosystems of the Murmansk District. Part 2. Lake–River System of the Chuna River under Conditons of Aerotechnogenic Pollution (KNTs RAN, Apatity, 2007) [in Russian].Google Scholar
  22. L. J. Lennox, “Sediment-water exchange in Lough Ennel with particular reference to phosphorus,” Water Res. 18 (12), 1483–1485 (1984).CrossRefGoogle Scholar
  23. D. N. Malinovsky, I. V. Rodyushkin, E. P. Shcherbakova, C. Ponter, B. Öhlander, and J. Ingri, “Fractionation of Fe isotopes as a result of redox processes in a basin,” Geochem. Int. (8), 798–803 (2005).Google Scholar
  24. T. I. Moiseenko and M. M. Bazova, “Effects of water acidification on element concentrations in natural waters of the Kola North,” Geochem. Int. 54 (1), 112–126 (2016).CrossRefGoogle Scholar
  25. T. I. Moiseenko and N. A. Gashkina, “Bioaccumulation of mercury in fish as indicator of water pollution,” Geochem. Int. 54 (6), 485–493 (2016).CrossRefGoogle Scholar
  26. T. I. Moiseenko, M. Mjelde, T. Brandrud, P. Brettum, V. Dauvalter, L. Kagan, N. Kashulin, L. Kudriavtseva, A. Lukin, S. Sandimirov, T. S. Traaen, O. Vandysh, and V. Yakovlev, “Pasvik River Watercourse, Barents Region: Pollution Impacts and Ecological Responses. Investigations in 1993,” NIVA-report OR-3118 (Oslo, 1994).Google Scholar
  27. T. I. Moiseenko, L. P. Kudryavtseva, I. V. Rodyushkin, V. A. Dauvalter, A. A. Lukin, and N. A. Kashulin, “Airborne contamination by heavy metals and aluminium in the freshwater ecosystems of the Kola subarctic region (Russia),” Sci. Tot. Environ. 160/161, 715–727 (1995).Google Scholar
  28. T. I. Moiseenko, V. A. Dauvalter, A. A. Lukin, L. P. Kudryavtseva, B. P. il’yashuk, E. A. Il’yashuk, S. S. Sandimirov, L. Ya. Kagan, O. I. Vandysh, A. N. Sharov, Yu. N. Sharova, and I. M. Koroleva, Anthropogenic Modifications of the Imandra Lake Ecosystem (Nauka, Moscow, 2002) [in Russian].Google Scholar
  29. T. I. Moiseenko, V. A. Dauvalter, and I. V. Rodushkin, “Mechanisms of the cycle of natural and human–introduced metals in surface waters of the Arctic basin,” Water Res. 25 (2), 212–224 (1998).Google Scholar
  30. T. I. Moiseenko, V. A. Dauvalter, and L. Ya. Kagan, “Mountain lakes as indicators of air pollution,” Water Res. 24 (5), 556–564 (1997).Google Scholar
  31. T. I. Moiseenko, N. A. Gashkina, M. I. Dinu, and T. A. Kremleva, “The peculiarities of water acidifica tion in European Russia and western Siberia,” Dokl. Earth Sci. 462 (5), 613–617 (2015).CrossRefGoogle Scholar
  32. Yu. N. Neradovsky, V. A. Dauvalter, and E. E. Savchenko, “Genesis of framboidal pyrite in the modern sediments of lakes, Kola Peninsula,” Zap. Ross. Mineral. O-va, No. 6, 50–55 (2009).Google Scholar
  33. S. A. Norton, A. Henriksen, P. G. Appleby, L. L. Ludwig, D. V. Vereault, and T. S. Traaen, “Trace metal pollution in eastern Finnmark, Norway, as evidenced by studies of lake sediments,” SFT-report 487/92 (Oslo, 1992).Google Scholar
  34. S. A. Norton, P. J. Dillon, R. D. Evans, G. Mierle, and J. S. Kahl, “The history of atmospheric deposition of Cd, Hg and Pb in North America: evidence from lake and peat bog sediments,” Sources, Deposition and Capony Interactions. V. III, Acidic Precipitation, Ed. by S. E. Lindberg et al., (Springer-Verlag, New York, 1990), pp. 73–101.Google Scholar
  35. J. Paatero, V. Dauvalter, J. Derome, J. Lehto, J. Pasanen, T. Vesala, J. Miettinen, U. Makkonen, E.-M. Kyrö, J. Jernström, L. Isaeva, and K. Derome, “Effects of Kola air pollution on the environment in the western part of the Kola Peninsula and Finnish Lapland,” Reports 2008:6. (Finnish Meteorological Institute, Helsinki, 2008).Google Scholar
  36. J. M. Pacyna and E. G. Pacyna, “An assessment of global and regional emissions of trace elements to the atmosphere from anthropogenic sources worldwide,” Environ. Rev. 4, 269–298 (2001).CrossRefGoogle Scholar
  37. S. Rognerud, “Sedimentundersøkelser i Pasvikela høsten 1989,” NIVA-Rapport 401/90, (Oslo,1990).Google Scholar
  38. S. Rognerud and E. Fjeld, “Regional survey of heavy metals in lake sediments in Norway,” AMBIO 22 (4), 206–212 (1993).Google Scholar
  39. S. Rognerud, S. A. Norton, and V. Dauvalter, “Heavy metal pollution in lake sediments in the border areas between Russia and Norway,” NIVA-Report 522/93 (Oslo, 1993).Google Scholar
  40. S. Rognerud, V. A. Dauvalter, E. Fjeld, B. L. Skjelkvåle, G. Christensen, and N. Kashulin, “Spatial trends of trace-element contamination in recently deposited lake sediment around the Ni–Cu smelter at Nikel, Kola Peninsula, Russian Arctic,” AMBIO 42 (6), 724–736 (2013).CrossRefGoogle Scholar
  41. O. Sandman, K. Eskonen, and A. Liehu, “The eutrophication history of Lake Särkinen, Finland and the effects of lake aeration,” Hydrobiologia 214, 191–199 (1990).CrossRefGoogle Scholar
  42. J. F. H. Shaw and E. E. Prepas, “Relationships between phosphorus in shallow sediments and in the trophogenic zone of seven Alberta lakes,” Water Res. 24 (5), 551–556 (1990).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Industrial Ecology Problems of the North, Karelian Scientific CenterRussian Academy of SciencesApatityRussia

Personalised recommendations