Advertisement

Geochemistry International

, Volume 56, Issue 7, pp 688–701 | Cite as

Features and Factors of Time Variations in Hydrogen Release at Lovozersky Rare-Metal Deposit (Kola Peninsula)

  • V. A. Nivin
  • V. V. Pukha
  • A. V. Lovchikov
  • R. G. Rakhimov
Article
  • 10 Downloads

Abstract

The paper presents the results of a long–term (52 months) monitoring of molecular hydrogen release from the rocks of the Lovozero Massif. Observations are performed in an underground mine with the help of a portable highly sensitive gas analyzer developed at the National Research Nuclear University MEPhI. The strong variability (of 0.7 to 303 ppm) of the dynamics of the volume concentration of hydrogen (φH2) is established. The main elements of the structure of the time series obtained consist of the fact that they have quite sustained and long intervals of low background concentrations, low–amplitude excesses of various durations, and short (usually high–amplitude) bursts. Seasonal and off–season periodic and other cyclic components in the structure of the series are identified. It is shown that the most important factors determining the dynamics of φH2 are barogenic (variation in the atmospheric pressure) and technogenic (technological explosions). Possible mechanisms of gas release are considered.

Keywords

hydrogen monitoring time series free gases gas yield atmospheric pressure factors of gas release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. V. Adushkin, A. A. Spivak, S. B. Kishkina, D. N. Loktev, and S. P. Solov’ev, “Dynamic processes in the system of interacting geospheres at the earth’s crust–atmosphere boundary,” Izv. Phys. Solid Earth 42 (7)., 567–584 (2006b).CrossRefGoogle Scholar
  2. V. V. Adushkin, V. P. Kudryavtsev, and V. M. Khazins, “Hydrogen degassing of the earth and ozone anomalies,” Dokl. Earth Sci. 406, 79–81 (2006a).CrossRefGoogle Scholar
  3. T. V. Dikanev, Spectral Analysis of Signals. Study Guides for Students of the Faculty of Nano and Biomedical Technologies (Saratov, 2011) [in Russian].Google Scholar
  4. P. P. Firstov and V. A. Shirokov, “Dynamics of molecular hydrogen and its relation to deformational processes at the Petropavlovsk–Kamchatskii geodynamic test site: evidence from observations in 1999–2003,” Geochem. Int. 43 (11)., 1056–1064 (2005).Google Scholar
  5. P. P. Firstov, E. A. Ponomarev, N. V. Cherneva, A. V. Buzevich, and O. P. Malysheva, “On the effects of air pressure variations on radon exhalation into the atmosphere,” J. Volcanol. Seismol. 1 (6)., 397–404 (2007).CrossRefGoogle Scholar
  6. M. B. Gokhberg, V. V. Adushkin, G. I. Voitov, M. G. Pushkin, N. G. Krivomazova, and B. B. Zel’dina, “On response of free gases of Khibiny on the powerful industrial explosion,” Dokl. Akad. Nauk 308 (5)., 1082–1086 (1989).Google Scholar
  7. I. L. Gufeld, Seismic Process. Physicochemical Aspects (Korolev, M. O., TSNIIMash, 2007) [in Russian].Google Scholar
  8. A. M. Gumen, A. P. Gusev, and V. P., Rudakov, “Subsoil hydrogen: an indicator of variations in the stressed and strained state of the Earth’s crust in aseismic regions,” Dokl. Earth Sci. 359A, 389–392 (1998).Google Scholar
  9. S. V. Ikorsky, and V. A. Nivin, “Free–phase gases in the rocks of the Lovozero alkaline massif, Kola Peninsula, Dokl. Earth Sci. 269 (4)., 934–936 (1983).Google Scholar
  10. S. V. Ikorsky and V. A. Nivin, “Experience in study of fuel gases of igneous rocks on mine of the Lovozero MPP,” Gornyi Zh., no. 11, 55–58 1984).Google Scholar
  11. S. V. Ikorsky, V. A. Nivin, and V. A. Pripachkin, Geochemistry of Gases of Endogenous Complexes (Nauka, St. Petersburg, 1992) [in Russian].Google Scholar
  12. D. I. Ishankuliev, G. I. Voitov, I. N. Nikolaev, V. P. Rudakov, and Yu. A. Utochkin, “Hydrogenous precursor of earthquakes?” Dokl. Earth Sci. 353 (1)., 308–309 (1997).Google Scholar
  13. N. I. Khitarov A. I. Kravtsov, G. I. Voitov, A. I. Fridman, N. A. Ortenberg, and A. S. Pavlov, “Gases of free emanations of the Khibiny Massif,” Sov. Geologiya, No. 2, 62–73 (1979).Google Scholar
  14. L. N. Kogarko, Ch. Kosztolanyi, and I. D. Ryabchikov, “Geochemistry of the reduced fluid in alkali magmas,” Geochem. Int. 24 (7)., 20–27 (1987).Google Scholar
  15. F. A. Letnikov and Yu. N. Avsyuk, “The nature of deep seismic foci,” Dokl. Earth Sci. 420 (3)., 580–582 (2008).CrossRefGoogle Scholar
  16. J. Lippmann–Pipke, J. Erzinger, M. Zimmer, C. Kujawa, M. Boettcher, E. Van Heerden, A. Bester, H. Moller, N. A. Stroncik, and Z. Reches, “Geogas transport in fractured hard rock–correlations with mining seismicity at 3.54 km depth, TauTona gold mine, South Africa,” Appl. Geochem. 26 (12)., 2134–2146 (2011).CrossRefGoogle Scholar
  17. A. V. Lovchikov, “Mining–tectonic impacts at the Lovozero rare–metal deposit,” Vestn. Murmansk. Gos. Tekhn. Univ. 11 (3)., 385–392 (2008).Google Scholar
  18. A. V. Lovchikov, “Review of the strongest rockbursts and mining–induced earthquakes in Russia,” J. Mining Sci. 49 (4)., 572–575 (2013).CrossRefGoogle Scholar
  19. I. N. Nikolaev A. V. Litvinov, and E. V. Emelin, “Opportunity of the use of MDP sensors as sensitive elements of gas analyzers,” Datchiki Sistemy, No. 5, 66–73 (2007).Google Scholar
  20. V. A. Nivin, “Possible gas geochemical and gas dynamic criteria for estimation of tectophysical state of local sites of igneous rocks,” Dokl. Akad. Nauk SSSR 308 (6)., 1453–1457 (1989).Google Scholar
  21. V. A. Nivin, “Main principles and means for gas–safe handing of underground works on the JSC Apatite Mining,” Gorn. Zn., No. 8, 34–36 (1991).Google Scholar
  22. V. A. Nivin, “Hydrocarbon gases of free phase in the nepheline–syenite magmatic complexes as product of natural abiogenic synthesis,” in Genesis of Hydrocarbon Fluids and Deposits, Ed. by A. N. Dmitrievskii and B. M. Valyaeva (GEOS, Moscow, 2006), pp. 130–138.Google Scholar
  23. V. A. Nivin, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (GEOKHI RAN, 2013).Google Scholar
  24. V. A. Nivin, “Free hydrogen–hydrocarbon gases from the Lovozero loparite deposit (Kola Peninsula, NWRussia),” Appl. Geochem. 74, 44–55 (2016).CrossRefGoogle Scholar
  25. V. A. Nivin, N. I. Belov, P. J. Treloar, and V. V. Timofeyev, “Relationships between gas geochemistry and release rates and the geomechanical state of igneous rock massifs,” Tectonophysics 336 (1–4), 233–244 (2001).CrossRefGoogle Scholar
  26. V. A. Nivin, A. V. Lovchikov, and R. G. Rakhimov, “First results of hydrogen monitoring and comparison of obtained data with seismicity on the Karnasurt Mine (Lovozero rare–metal deposit, Kola Peninsula), in Proceedings of 17th All–Russian (with international participation) Fersman Scientific Session, Apatite, Russia, 2009, Ed. by Yu. L. Voitekhovsky (K & M, Apatity, 2009), pp. 190–192 [in Russian].Google Scholar
  27. V. A. Nivin, V. V. Pukha, A. V. Lovchikov, and R. G. Rakhimov, “Changes in the molecular hydrogen concentration in an underground mine (Lovozero rare–metal deposit, Kola Peninsula),” Dokl. Earth Sci. 471, 1261–1264 (2016).CrossRefGoogle Scholar
  28. A. B. Ospanov, “One peculiarity in the earthquake prediction from radon anomalies in the underground waters, Hydrogeochemical Earthquake Precursors, Ed. by G. M. Varshal (Nauka, Moscow, 1985), pp. 74–81 [in Russian].Google Scholar
  29. I. A. Petersil’e, “Hydrocarbon gases and bitumens of intrusive massifs in the central part of the Kola Peninsula,” Dokl. Akad. Nauk SSSR 122 (6)., 1086–1089 (1958).Google Scholar
  30. J. Potter A. H. Rankin, P. J. Treloar, V. A. Nivin, W. Ting, and P. Ni, “A preliminary study of methane inclusions in alkaline igneous rocks of the Kola igneous province, Russia: Implications for the origin of methane in igneous rocks,” Eur. J. Mineral. 10 (6)., 1167–1180 (1998).CrossRefGoogle Scholar
  31. Problems of Interacting Geospheres. A Collection of Papers of the Institute of Geosphere Dynamics, Ed. by S. B. Turuntaev (GEOS, Moscow, 2009) [in Russian].Google Scholar
  32. V. P. Rudakov, Emanation Monitoring of Geomedia and Processes (Nauchn. Mir, Moscow, 2009) [in Russian].Google Scholar
  33. V. P. Rudakov, and V. V. Tsyplakov, “Baric effects in variations of subsoil radon and a sample of radium–bearing rock,” All–Russian Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry (VESEMPG– 213), Moscow, Russia, 2013 (GEOKHI RAS, Moscow, 2013), p. 112 [in Russian].Google Scholar
  34. B. N. Ryzhenko and S. R. Kraynov, “Causes of hydrogen accumulation and reduction in hydrothermal fluids,” Geochem. Int. 29 (12)., 1–8 (1992).Google Scholar
  35. I. D. Ryabchikov and L. N. Kogarko, “Redox potential of the Khibiny magmatic system and genesis of abiogenic hydrocarbons in alkaline plutons,” Geol. Ore Deposits 51 (6)., 425–440 (2009).CrossRefGoogle Scholar
  36. A. A. Spivak, “The specific features of geophysical fields in the fault zones,” Izv., Phys. Solid Earth 46 (4), 327–338 (2010).CrossRefGoogle Scholar
  37. A. A. Spivak S. L. Kozhukhov, M. V. Sukhorukov, and V. A. Kharlamov, “Radon emanation as an indicator of the intensity of intergeospheric interactions at the Earth’s crust–atmosphere interface,” Izv., Phys. Solid Earth 45 (2)., 118–133 (2009).CrossRefGoogle Scholar
  38. V. L. Syvorotkin, Deep Degassing and Global Catastrophes (Geoinformtsentr, Moscow, 2002) [in Russian].Google Scholar
  39. V. L. Syvorotkin, “Twenty five years of hydrogen theory of the ozone layer destruction or alternative to the Montreal protocol,” Prostranstvo Vremya, No. 3, 304–312 (2015).Google Scholar
  40. S. F. Timashev, V. A. Nivin, V. L. Syvorotkin, and Yu. S. Polyakov, “Flicker–noise spectroscopy in analyzing dynamics of hydrogen release in the Khibiny and Lovozero massifs, Kola Peninsula,” in Dynamic Phenomena in Complex Systems, Ed. by A. V. Mokshina, S. A. Demina, R. M. (MOiNRT, Kazan, 2011), pp. 263–278 [in Russian].Google Scholar
  41. J.–P. Toutain and J. C. Baubron “Gas geochemistry and seismotectonics: a review,” Tectonophysics 304, 1–27 (1999).CrossRefGoogle Scholar
  42. V. I. Utkin and A. K. Yurkov, “Radon as a “deterministic” indicator of natural and industrial geodynamic processes,” Dokl. Earth Sci. 427, 833–836 (2009).CrossRefGoogle Scholar
  43. M. Van Camp and P. Vauterin, “Tsoft: graphical and interactive software for the analysis of time series and Earth tides,” Comp. Geosci. 31 (5)., 631–640 (2005).CrossRefGoogle Scholar
  44. G. I. Voitov, “Geochemical and carbon isotopic instabilities of spontaneous gases in seismically active regions,” Geochem. Int. 38 (11)., 1084–1106 (2000).Google Scholar
  45. G. I. Voitov, V. V. Adushkin, M. B. Gokhberg, L. P. Nosik, M. I. Kucher, I. V. Nikulina, M. G. Pushkin, and L. M. Zhogina, “Chemical and isotope instability of gas jets in Khibiny,” Dokl. Akad. Nauk SSSR 312 (3)., 567–571 (1990).Google Scholar
  46. G. I. Voitov, Yu. M. Miller, and V. A. Nivin, “On isotopic carbon CH4 instabilties of free gases of the Lovozero alkaline massif,” Dokl. Akad. Nauk 322 (4)., 681–685 (1992).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Nivin
    • 1
  • V. V. Pukha
    • 1
  • A. V. Lovchikov
    • 2
  • R. G. Rakhimov
    • 3
  1. 1.Geological Institute, Kola Science CenterRussian Academy of SciencesApatity, Murmansk oblastRussia
  2. 2.Mining Institute, Kola Science CenterRussian Academy of SciencesApatity, Murmansk oblastRussia
  3. 3.OOO Lovozersky Mining and Processing PlantRevda, Murmansk oblastRussia

Personalised recommendations