Advertisement

Geochemistry International

, Volume 56, Issue 7, pp 711–718 | Cite as

Interaction of Rh(III) with Humic Acids and Components of Natural Adsorption Phases

  • I. Ya. Koshcheeva
  • N. V. Korsakova
  • O. A. Tyutyunnik
  • I. V. Kurbakova
Article
  • 5 Downloads

Abstract

To study the migration and accumulation of Rh(III) in natural systems, we have synthesized complexes of Rh(III) and fulvic acids (FA), which are dominant organic compounds of natural waters. The composition of rhodium hydroxofulvate complexes is determined at pH 7.0, and the stability constant of these complexes is calculated. Data are obtained on interaction of FA and Rh(III) hydroxofulvate complexes with components of naturally occurring reactive barriers (ferrihydrite, quartzite, clay shale, and natural aluminosilicate suspensions) at pH 4.0–8.0. The adsorption behavior of FA and rhodium fulvate complexes at the sorbents was determined to be analogous.

Keywords

fulvic acids fulvate rhodium(III) complexes natural adsorption phases rhodium adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Clemens and N. Heikki, “Distribution of Pd, Pt and Au–emissions from nickel industry on the Cola Peninsula, NWRussia, as seen in moss and humus samples,” in Palladium Emissions in the Environment: Analytical Methods, Environmental Assessment and Health Effects, Ed. by F. Zereini and F. Alt (Springer–Verlag, Berlin–Heidelberg, 2006).Google Scholar
  2. D. Dyrssen and V. Tyrrel, “Studies in the hydrolysis of metal ions. 33. A miniature solubility column and its application to a study of the solubility of red mercury( II) oxide in acid 3 M NaClO4 solutions,” Acta Chim. Scand. 15, 393–402 (1961)CrossRefGoogle Scholar
  3. J. L. Jambor and J. E. Dutrisac, “Occurrence and constitution of natural and synthetic ferrihydrite. A widespread iron oxyhydroxide,” Chem. Rev. 98, 2549–2585 (1998).CrossRefGoogle Scholar
  4. I. K. Kalavrouziotis and P. H. Koukoulakis, “The environmental impact of the platinum group elements (Pt, Pd, Rh) emitted by the automobile catalyst converters,” Water Air Soil Pollut. 196, 393–402 (2009).CrossRefGoogle Scholar
  5. A. E. Karatapanis, Yi. Fiamegos, C. D. Stalikas, “Silicamodified magnetic nanoparticles functionalzed cetylpyridinum bromide for the preconcentration of metal after complexation with 8–hidroxylqunoline,” Talanta 84, 834–839 (2011).CrossRefGoogle Scholar
  6. I. V. Kubrakova, I. Y. Koshcheeva, O. A. Tyutyunnik, M. V. Mironenko, A. V. Fortygin, and S. G. Lobov, “Migration of platinum, palladium, and gold in the water systems of platinum deposits,” Geochem. Int. 49 (11) 1072–1084 (2011).CrossRefGoogle Scholar
  7. I. Y. Koshcheeva, I. V. Kubrakova, N. V. Korsakova, and O. A. Tyutyunnik, “Solubility and migration ability of rhodium in natural conditions: model experimental data,” Geochem. Int. 54 (7), 624–632 (2016).CrossRefGoogle Scholar
  8. I. V. Kubrakova, O. A. Tyutyunnik, I. Y. Koshcheeva, S. N. Nabiullina, and A. Y. Sadagov, “Migration behavior of platinum group elements in natural and technogeneous systems,” Geochem. Int. 55 (1) 108–124 (2017).CrossRefGoogle Scholar
  9. M. Moldavan, “Origin and fate of platinum group elements in environment,” Anal. Bioanal. Chem. 338 (3), 537–540 (2007).CrossRefGoogle Scholar
  10. F. S. Reith, G. Campbell, A. S. Ball, A. Pringe, and G. Sauthman, “Platinum in Earth surface environment,” Earth–Sci. Rev. 131, 1–21 (2014).CrossRefGoogle Scholar
  11. J. Shen, A. D. Ebner, and J. A. Ritter, “Points of zero charge and intrinsic equilibrium constants of silicamagnetite composite oxides,” J. Colloid Interface Sci. 214, 333–343 (1999).CrossRefGoogle Scholar
  12. Yo. Takahashi, Yo. Minai, S. Ambe, et al., “Comparison of adsorption behavior of multiple inorganic ions on kaolinit and silica in the presence of humic acid using the multitracer technique,” Geochim. Cosmochim. Acta 63 (6), 815–836 (1999).CrossRefGoogle Scholar
  13. A. Turner and Tang Wu Kai, “Removal of platinum group elements in an estuarine turbidity maximum,” Mar. Chem. 107, 295–307 (2007).CrossRefGoogle Scholar
  14. G. M. Varshal, T. M. Velyukhanova, I. S. Sirotkina, and R. D. Yartseva, “Fractionation, quantitative determination, and study of some main components of dissolved organic matters of natural waters,” Gidrokhim. Mater. 59, 143–151 (1973).Google Scholar
  15. G. M. Varshal L. N. Intskirveli, I. S. Sirotkina, I. V. Kolosov, and I. Ya Koshcheeva, “Association of fulvic acids in aqueous solutions,” Geokhimiya, No. 10, 1581–1584 (1975).Google Scholar
  16. G. M. Varshal, T. K. Velyukhanova, I. Ya. Koshcheeva, A. A. Bugaevsky, and Yu. V. Kholin, “On dissociation constants of fulvic acids of natural waters: experiment and numerical calculation,” in Proceedings of the Second All–Russian Conference on Carbon Geochemistry, Moscow, Russia, 1986 (GEOKHI RAS, Moscow, 1986), pp. 388–390 [in Russian].Google Scholar
  17. G. M. Varshal, T. M. Velyukhanova, I. Ya. Koshcheeva, I. V. Kubrakova, and N. N. Baranova, “Complexing of noble metals with fulvic acis of natural waters and geochemical role of these processes”, in Analytical Chemistry of Trace Elements (Nauka, Moscow, 1988), pp. 112–146 [in Russian].Google Scholar
  18. G. M. Varshal, A. A. Bugaevsky, Yu. V. Kholin, et al., “Modeling equilibria in fulvic solutions of natural waters,” Water Chemistry and Technology 12 (11), 979–986 (1990).Google Scholar
  19. J. D. Whiteley and F. Murrey, “Anthropogenic platinum group elements (Pt, Pd, Rh) concentration in road dust and road side soils from Perth, Western Australia,” Sci. Total Environ. 317, 121–135 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. Ya. Koshcheeva
    • 1
  • N. V. Korsakova
    • 1
  • O. A. Tyutyunnik
    • 1
  • I. V. Kurbakova
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI)Russian Academy of SciencesMoscowRussia

Personalised recommendations