Skip to main content
Log in

Mineralogy of silicate inclusions in the Elga IIE iron meteorite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The petrography, mineral modal data and major and trace element compositions of 15 silicate inclusions in the Elga iron meteorite (chemical group IIE) show that these inclusions represent chemically homogeneous zoned objects with highly variable structures, reflecting the sequence of crystallization of a silicate melt during cooling of the metal host. The outer zones of inclusions at the interface with their metal host have a relatively medium-grained hypocrystalline texture formed mainly by Cr-diopside and merrillite crystals embedded in high-silica glass, whereas the central zones have a fine-grained hypocrystalline texture. Merrillite appears first on the liquidus in the outer zones of the silicate inclusions. Na and REE concentrations in merrillite from the outer zones of inclusions suggest that it may have crystallized as α-merrillite in the temperature range of 1300–1700°С. Merrillite tends to preferentially accumulate Eu without Sr. Therefore, strongly fractionated REE patterns are not associated with prolonged differentiation of the silicate melt source but depend on crystallization conditions of Н-chondrite droplets in a metallic matrix. The systematic decrease in Mg# with increasing Fe/Mn in bronzite may indicate partial reduction of iron during crystallization of the inclusion melt. The modal and bulk compositions of silicate inclusions in the Elga meteorite, as well as the chemical composition of phases are consistent with the model equilibrium crystallization of a melt, corresponding to 25% partial melting of H-chondrite, and the crystallizing liquidus phase, merrillite, and subsequent quenching at about 1090°С. Despite a high alkali content of the average weighted bulk inclusion composition, La/Hf and Rb/Th fall within the field of H chondrites, suggesting their common source. Our results reveal that silicate inclusions in the Elga (IIE) iron meteorite originated by mixing of two impact melts, ordinary chondrite and Ni-rich iron with а IIE composition, which were produced by impact event under near-surface conditions on a partially differentiated parent asteroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Anders and N. Grevesse, “Abundances of the elements: meteoritic and solar,” Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  Google Scholar 

  • J. Ando, “Phase diagrams of Ca3(PO4)2–Mg3(PO4)2 and Ca3(PO4)2–CaNaPO4 systems,” Bull. Chem. Soc. Jpn. 31, 201–205 (1958).

    Article  Google Scholar 

  • A. A. Ariskin, “Phase equilibria modeling in igneous petrology: use of COMAGMAT model for simulating fractionation of ferro-basaltic magmas and the genesis of high-alumina basalt,” J. Volcanol. Geotherm. Res. 90, 115–162 (1999).

    Article  Google Scholar 

  • A. A. Ariskin, M. I. Petaev, A. A. Borisov, and G. S. Barmina, “METEOMOD: a numerical model for the calculation of melting-crystallization relationships in meteoritic igneous systems,” Meteorit. Planet. Sci. 32, 123–133 (1997).

    Article  Google Scholar 

  • D. P. Blanchard and J. R. Budahn, “Remnants from the ancient crust: clasts from Consortium breccia 73255,” Proc. Lunar Planet. Sci. Conf. 10, 803–816 (1979).

    Google Scholar 

  • D. P. Blanchard, J. W Jacobs., and J. C. Brannon, “Chemistry of ANT-suite and felsite clasts from consortium breccia 73215 and of gabbroic anorthosite 79215,” Proc. Lunar Planet. Sci. 8, 2507–2524 (1977).

    Google Scholar 

  • D. D. Bogard, Garrison, D.H., and McCoy, T.J., “Chronology and petrology of silicates from IIE iron meteorites: evidence of a complex parent body evolution,” Geochim. Cosmochim. Acta 64, 2133–2154 (2000).

    Article  Google Scholar 

  • V. F. Buchwald, Handbook of Iron Meteorites. Their History, Distribution, Composition and Structure (University of California Press, Berkeley, 1975).

    Google Scholar 

  • T. E. Bunch, K. Keil, and E. Olsen, “Mineralogy and petrology of silicate inclusions in iron meteorites,” Contrib. Mineral. Petrol. 25, 297–340 (1970).

    Article  Google Scholar 

  • A. J. Campbell and M. Humayun, “Trace element microanalysis in iron meteorites by laser ablation ICP-MS,” Anal. Chem. 71, 939–946 (1999).

    Article  Google Scholar 

  • L. Casanova, T. Graf, and K. Marti, “Discovery of an unmelted H-chondrite inclusion in an iron meteorite,” Science 268, 540–542 (1995).

    Article  Google Scholar 

  • R. N. Clayton T. K. Mayeda, E. Olsen, and M. Prinz, “Oxygen isotope relationships in iron meteorites,” Earth Planet. Sci. Lett. 65, 229–232 (1983).

    Article  Google Scholar 

  • M. I. D’yakonova, V. Ya. Kharitonova, and A. A. Yavnel, Chemical Composition of Meteorites (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  • A. M. Davis, “Volatile evolution and loss,” in Meteorites and the Early Solar System II, Ed. by D. S. Lauretta and H. Y. McSween, Jr. (Arizona Univ., Tucson, 2006), pp. 295–307.

    Google Scholar 

  • R. T. Dodd “Olivine microporphyry in the St. Mesmin chondrite,” Meteoritics 11, 1–20 (1970).

    Article  Google Scholar 

  • M. Ebihara, Y. Ikeda, M. Prinz, “Petrology and chemistry of the Miles IIE iron II: chemical characteristics of the Miles silicate inclusions,” Antarc. Meteorite Res. 10, 373–388 (1997).

    Google Scholar 

  • L. Grossman, “Refractory trace elements in Ca-Al-rich inclusions in the Allende meteorite,” Geochim. Cosmochim. Acta 37, 1119–1140 (1973).

    Article  Google Scholar 

  • W. Hsu, “Ion probe study of silicate inclusions from Colomera (IIE) iron Meteorite: the rare earth element persective,” Acta Geol. Sinica 78, 1060–1074 (2004).

    Article  Google Scholar 

  • W. Hsu, “Rare earth element geochemistry and petrogenesis of Miles (IIE) silicate inclusions,” Geochim. Cosmochim. Acta 67, 4807–4821 (2003).

    Article  Google Scholar 

  • Y. Ikeda and M. Prinz, “Petrology of silicate inclusions in the Miles IIE iron,” Proc. NIPR Symp. Antarct. Meteorites 9, 143–173 (1996).

    Google Scholar 

  • K. P. Jochum, B. Stoll, J. M. Friedrich, M. Amini, St. Becker, M. Dücking, D. S. Ebel, J. Enzweiler, Hu Ming-Yue, D. Kuzmin, R. Mertz-Kraus, W. E. G. Müller, J. Regnery, A. V. Sobolev, Wang Xiaohong, and Zhan Xiu-Chun, “Laser ablation-inductively coupled plasma-mass spectrometry and its application in geochemistry, cosmochemistry and environmental research,” Rock and Mineral Analysis 28 (1), 53–68 (2009).

    Google Scholar 

  • B. L. Jolliff, R. L. Korotev, and L. A. Haskin, “Geochemistry of 2–4mm particles from Apollo 14 soil (14161) and implications regarding igneous components and soil-forming processes,” Proc. Lunar and Planet. Sci. Conf. 21, 193–219 (1991).

    Google Scholar 

  • B. L. Jolliff, L. A. Haskin, R. O. Colson, and M. Wadhwa, “Partitioning in REE-saturating minerals: theory, experiment, and modelling of whitlockite, apatite, and evolution of lunar residual magmas,” Geochim. Cosmochim. Acta 57, 4069–4094 (1993).

    Article  Google Scholar 

  • L. L. Kashkarov, N. N. Korotkova, and A. K. Lavrukhina, “Relict radiation of iron meteorite by the low-energy heavy nuclei of cosmic rays,” Dokl. Akad. Nauk SSSR 221, 198–200 (1975).

    Google Scholar 

  • N. R. Khisina, S. N. Teplyakova, R. Wirth, V. G. Senin, A. A. Averin and A. A. Shiryaev, “Carbon-bearing phases in shock-induced melt zones of the Elga Meteorite,” Geochem. Int. 55 (4), 317–329 (2017).

    Article  Google Scholar 

  • K. Kitts and K. Lodders, “Survey and evaluation of eucrite bulk compositions,” Meteorit. Planet. Sci. 33, 197–A213 (1998).

    Article  Google Scholar 

  • A. N. Krot and J. T. Wasson, “Silica-merrihueite/roedderite- bearing chondrules and clasts in ordinary chondrites: new occurrences and possible origin,” Meteoritics 29 (5), 707–718 (1994).

    Article  Google Scholar 

  • G. Kurat, E. Zinner, and M. E. Varela, “Trace element studies of silicate-rich inclusions in the Guin (UNGR) and Kodaikanal (IIE) iron meteorites,” Meteorit. Planet Sci. 42, 1441–1463 (2007).

    Article  Google Scholar 

  • L. G. Kvasha, Yu. G. Lavrent’ev, and N. V. Sobolev, “Silicate inclusions and signs of impact metamorphism in the Elga octahedrite,” Meteoritika 33, 143–147 (1974).

    Google Scholar 

  • D. H. Lindsley D. J. Andersen, “Two pyroxene thermometer,” 13th Proc. Lunar and Planet. Sci. Conf. in J. of Geoph. Research 88, A887–A906 (1983).

    Article  Google Scholar 

  • A. A. Maslov, R. V. Ostvald, V. V. Shagalov, E. S. Maslova, and Yu. S. Gorenyuk, Chemical Technology of Niobium and Tantalum (Tomsk Politekhn Univ., Tomsk, 2010) [in Russian].

    Google Scholar 

  • T. J. McCoy, “Silicate-bearing IIE irons: Early mixing and differentiation in a core-mantle environment and shock resetting of ages,” Meteoritics 30, 542–543 (1995).

    Google Scholar 

  • H. J. Melosh, Impact Cratering: A Geologic Process (Oxford, 1995).

    Google Scholar 

  • D. Mittlefehldt, T. McCoy, C. Goodrich, and A. Kracher, “Non-Chondritic Meteorites from Asteroidal Bodies,” Ed. by J. J. Papike, in Planet. Mater. 4–7 (1998).

    Google Scholar 

  • R. W. Morris, G. J. Taylor, H. E. Newsom, K. Keil, and S. R. Garcia, “Highly evolved and ultramafic lithologies from Apollo 14 soils,” Proc. Lunar Planet. Sci. Conf. 20, 61–75 (1990).

    Google Scholar 

  • E. Olsen, A. Davis, R. J. Clarke, Jr., L. Schultz, and H. W. Weber, “Watson: a new link in the IIE iron chain,” Meteoritics 29, 200–213 (1994).

    Article  Google Scholar 

  • Eu. G. Osadchii, G. V. Baryshnikova, and G. V. Novikov, “The Elga meteorite: silicate inclusion and shock metamorphism,” 12th Lunar Planet Sci. 1049–1068 (1981).

    Google Scholar 

  • N. J. G. Pearce, W. T. Perkins, J. A. Westgate, M. P. Gorton, S. E. Jackson, C. R. Neal, and S. P. Chenery, “A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials,” Geostandards Newsletter: The J. Geostandards and Geoanalysis 21, 115–144 (1997).

    Article  Google Scholar 

  • Phase Diagrams of Fe-based Double and Multicomponent Systems. A Reference Book, Ed. by O. A. Banykh and M. E. Drits (Metallurgiya, Moscow, 1986) [in Russian]

  • L. N. Plyashkevich, “Some data on composition and structure of iron meteorite,” Meteoritika 22, 51–60 (1962).

    Google Scholar 

  • M. Prinz C. E. Nehru, J. S. Delaney, G. E. Harlow, and R. L. Bedell, “Modal studies of mesosiderites and related achondrites, including the new mesosiderite ALHA 77219,” Proc. Lunar Sci. Conf. 11, 1055–1071 (1980).

    Google Scholar 

  • M. Prinz, C. E. Nehru, J. S. Delaney, M. Weisberg, and E. Olsen, “Globular silicate inclusions in IIE irons and Sombrerete: highly fractionated minimum melts,” 14th Lunar Planet. Sci. 618–619 (1983).

    Google Scholar 

  • J. E. Quick, A. L. Albee, M.-S. Ma, A. V. Murali, and R. A. Schmitt, “Chemical composition and possible immiscibility of two silicate melts in 12013,” Proc. Lunar Sci. Conf. 8, 2153–2189 (1977).

    Google Scholar 

  • A. E. Rubin, “Mineralogy of meteorite groups,” Meteoritics 32, 231–247 (1997).

    Article  Google Scholar 

  • A. E. Rubin, E. A. Jerde, P. Zong, and J. T. Wasson, “Properties of the Guin ungrouped iron meteorite: The origin of Guin and of group-IIE irons,” Earth. Planet. Sci. Lett. 76, 209–226 (1986).

    Article  Google Scholar 

  • A. Ruzicka and M. Hutson, “Comparative petrology of silicates in the Udei Station (IAB) and Miles (IIE) iron meteorites: implications for the origin of silicate-bearing irons,” Geochim. Cosmochim. Acta 74, 394–434 (2010).

    Article  Google Scholar 

  • A. Ruzicka, “Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies,” Chem. Erde 74, 3–48 (2014).

    Article  Google Scholar 

  • A. Ruzicka, G. W. Fowler, G. A. Snyder, M. Prinz, J. J. Papike, and L. A. Taylor, “Petrogenesis of silicate inclusions in the Weekeroo Station IIE iron meterorite: differentiation, remelting and dynamic mixing,” Geochim. Cosmochim. Acta 63, 2123–2143 (1999).

    Article  Google Scholar 

  • A. Ruzicka, M. Hutson, and C. Floss, “Petrology of silicate inclusions in the Sombererete ungrouped iron meteorite: implications for the origins of IIE-type silicatebearing irons,” Meteorit. Planet. Sci. 41 (11), 1797–1831 (2006).

    Article  Google Scholar 

  • E. R. D. Scott and J. T. Wasson, “Chemical classification of iron meteorites–VIII.Groups IC, IIE, IIIF and 97 other irons,” Geochim. Cosmochim. Acta 40, 103–115 (1976).

    Article  Google Scholar 

  • L.-K. Sha, “Whitlockite solubility in silicate melts: some insights into lunar and planetary evolution,” Geochim. Cosmochim. Acta 64, 3217–3236 (2000).

    Article  Google Scholar 

  • G. A. Snyder, L. A. Taylor, Y.-G. Liu, and R. A. Schmitt, “Petrogenesis of the western highlands of the Moon: Evidence from a diverse group of whitlockite-rich rocks from the Fra Mauro Formation,” Proc. Lunar Planet. Sci. 22, 399–416 (1992)

    Google Scholar 

  • H. Takeda, W. Hsu, and G. R. Huss, “Mineralogy of silicate inclusions of the Colomera IIE iron and crystallization of Cr-diopside and alkali feldspar from a partialmelt,” Geochim. Cosmochim. Acta 67, 2269–2287 (2003a).

    Article  Google Scholar 

  • H. Takeda, D. D. Bogard, M. Otsuki, and T. Ishii, “Mineralogy and Ar–Ar age of the Tarahumara IIE iron, with reference to the origin of alkali-rich materials,” NIPR Annual Meeting 16 (2003b).

  • S. N. Teplyakova, M. Humayun, C. A. Lorenz, and M. A. Ivanova, “A Common Parent for IIE Iron Meteorites and H Chondrites,” 43st Lunar Planet. Sci. Conf. pdf#1130.pdf (2012).

    Google Scholar 

  • S. N. Teplyakova, “Evolution of molten material in iron cores of small planets,” Solar Syst, Res. 45 (6), 515–522 (2011).

    Article  Google Scholar 

  • S. N. Teplyakova, and N. N. Kononkova, “Evaluating of cooling rate of the Elga iron meteorite (IIE),” in Thirteen International Conference on Physicochemical and Petrophysical Studies in the Earth’s Science (2012), pp. 258–261.

    Google Scholar 

  • S. N. Teplyakova, N. R. Khisina, V. V. Artemov, and A. L. Vasil’ev, “Nanomineralogy of dendritic inclusions in the Elga iron meteorite,” Zap. Vseross. Mineral. O-va 141 (2), 42–52 (2012).

    Google Scholar 

  • W. E. Tröger, Optical Determination of Rock-Forming Minerals (Schweizerbartscge Verlagsbuchhandlung, Stuttgart, 1979).

    Google Scholar 

  • F. Ulff Møller, K. L. Rusmussen, M. Prinz, H. Palm, and B. Spettel, “Magmatic activity on the IVA parent body: evidence from silicate-bearing iron meteorites,” Geochim. Cosmochim. Acta 59, 4713–4728 (1995).

    Article  Google Scholar 

  • E. Van Achterbergh, C. G. Ryan, S. E. Jackson, and W. L. Griffin, “Data reduction software for LA-ICPMS: appendix,” in Laser Ablation—ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications, Ed. by P. J. Sylvester, Mineral. Ass Canada Short Course Ser. 29, 239–243 (2001).

    Google Scholar 

  • V. I. Vronskii, “On find of the Elga iron meteorite,” Meteoritika 22, 47–50 (1962).

    Google Scholar 

  • D. Walker M. A. Powell, D. E. Lofgren, and J. F. Hays, “Dynamic crystallization of a eucrite basalt,” Proc. Lunar Planet. Sci Conf. 9th 1369, 13–91 (1978).

    Google Scholar 

  • D. Ward, A. Bischoff, J. Roszjar, M. J. Whitehouse, “Trace element inventory of meteoritic of Ca-phosphates,” 47st Lunar and Planet. Sci. Conf. pdf #1456 (2016).

    Google Scholar 

  • P. H. Warren, E. A. Jerde, and G. W. Kallemeyn, “Pristine Moon rocks: a "large” felsite and a metal-rich ferroan anorthosite,” Proc. Lunar. Planet. Sci. Conf. 17th in J. Geophys. Res., 92, E303–E313 (1987)

    Article  Google Scholar 

  • P. H. Warren, G. J. Taylor, K. Keil, D. N. Shirley, and J. T. Wasson, “Petrology and chemistry of two "large” granite clasts from the Moon,” Earth Planet. Sci. Lett. 64, 175–185 (1983)

    Article  Google Scholar 

  • G. J. Wasserburg, H. G. Sanz, and A. E. Bence, “Potassium feldspar phenocrysts in the surface of Colomera, and iron meteorite,” Science 161, 684–687 (1968).

    Article  Google Scholar 

  • J. T. Wasson, “Ni, Ga, Ge and Ir in the metal of iron meteorites with silicate inclusions,” Geochim. Cosmochim. Acta 34, 957–964 (1970).

    Article  Google Scholar 

  • J. T. Wasson and G. W. Kallemayn, “Composition of chondrites,” Phil. Trans. R.S. London. A 328, 535–544 (1996).

    Google Scholar 

  • J. T. Wasson, J. Willis, C. M. Wai, and A. Kracher, „Origin of iron meteorite groups IAB and IIICD,” 11th Lunar Planet. Sci., 25–26 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Teplyakova.

Additional information

Original Russian Text © S.N. Teplyakova, C.A. Lorenz, M.A. Ivanova, N.N. Kononkova, M.O. Anosova, K.M. Ryazantsev, Yu.A. Kostitsyn, 2018, published in Geokhimiya, 2018, No. 1, pp. 3–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teplyakova, S.N., Lorenz, C.A., Ivanova, M.A. et al. Mineralogy of silicate inclusions in the Elga IIE iron meteorite. Geochem. Int. 56, 1–23 (2018). https://doi.org/10.1134/S0016702918010081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918010081

Keywords

Navigation