Geochemistry International

, Volume 55, Issue 11, pp 1022–1032 | Cite as

Isotope (δD, δ18О) systematics in waters of the Russian Arctic seas

  • E. O. Dubinina
  • S. A. Kossova
  • A. Yu. Miroshnikov
  • N. M. Kokryatskaya


Oxygen and hydrogen isotope analysis was performed to study the processes of distribution of water masses and modification of their salinity in the Russian Arctic seas. A wealth of new isotopic data was obtained for freshwater (river runoff, Novaya Zemlya glaciers) and seawater samples collected along a set of extended 2D profiles in the Barents, Kara, and Laptev Seas. The study presents the first δD values measured for the Northeast Atlantic Deep Water NEADW dominated the water column of the Barents Sea (S = 34.90 ± 0.05, δD = +1.55 ± 0.4‰, δ18O = +0.26 ± 0.1‰, n = 44). This water mass is present in the Kara Sea and western Laptev Sea. The relationship between δD, δ18О, and salinity data was used to calculate the fractions of waters of different origin, including the fractions of continental runoff in waters of the Barents, Kara, and Laptev Seas. It was shown that the relationships between the isotopic parameters (δD, δ18О) and salinity in waters of the Kara and Laptev Seas is controlled by the intensity of continental runoff and sea ice processes. Sea ice formation is the main factor controlling the formation of the water column on the Laptev Sea shelf, whereas the surface waters of the middle Kara Sea are dominated by the contribution of river runoff. A very strong stratification in the Kara Sea is caused by the presence of a relatively fresh surface layer mostly contributed by estuarine water inputs from the Ob and Yenisei Rivers. The contribution of river waters reaches 40–60% in the surface layer in the central part of the sea and decreases to a few percent down 100 m water depth. Stratification in the western part of the Laptev Sea is controlled by the contribution of freshwater input from the Lena River and modification of salinity by sea ice formation.


oxygen and hydrogen isotopes salinity seawater the Arctic Kara Sea Laptev Sea Barents Sea freshening continental runoff 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Aagard, L. K. Coachman, and E. Carmack, “On the halocline of the Arctic Ocean,” Prog. Oceanography, 28 (6), 529–545 (1981).Google Scholar
  2. K. Aagard, “The role of sea ice and other fresh water in the Arctic Circulation,” J. Geophys. Res. 94 (10), 14485–14498 (1989).CrossRefGoogle Scholar
  3. D. Bauch, H. Erlenkeuser, and N. Andersen, “Water mass processes on Arctic shelves as revealed from 18O of H2O,” Glob. Planet. Change, 48, 165–174 (2005).CrossRefGoogle Scholar
  4. D. Bauch, H. Erlenkeuser, V. Stanovoy, et al., “Freshwater distribution and brine waters in the southern Kara Sea in summer 1999 as depicted by δ18O results,” in Siberian River Run-Off in the Kara Sea, Ed. by R. Stein, (Elsevier, Amsterdam, 2003), pp. 73–90.Google Scholar
  5. D. Bauch, J. Hölemann, S. Willmes, M. Gröger, A. Novikhin, A. Nikulina, H. Kassens, and L. Timokhov, “Changes in distribution of brine waters on the Laptev Sea shelf in 2007,” J. Geophys. Res. 115, C11008 (2010).CrossRefGoogle Scholar
  6. D. Bauch, M. Groger, I. Dmitrenko, J. Holemann, et al., “Atmospheric controlled freshwater release at the Laptev Sea continental margin,” Polar Res. 30, 5858 (2011).CrossRefGoogle Scholar
  7. D. Bauch, J. A. Hölemann, I. A. Dmitrenko, et al., “Impact of Siberian coastal polynyas on shelf-derived Arctic Ocean halocline waters,” J. Geophys. Res. 117 (2012).Google Scholar
  8. D. Bauch, J. Hölemann, A. Nikitina, C. Wegner, M. Janout, L. A. Timokhov, and H. Kassens, “Correlation of river water and local sea-ice melting on the Laptev Sea shelf (Siberian Arctic),” J. Geophys. Res. 118, 550–561 (2013).CrossRefGoogle Scholar
  9. D. Bauch, S. Torres-Valdes, I. Polyakov, A. Novikhin, I. Dmitrenko, J. McKay, and A. Mix, ‘Halocline water modification and along-slope advection at the Laptev Sea continental margin,” Ocean Sci. 10, 141–154 (2014).CrossRefGoogle Scholar
  10. G. Bonish and P. Schlosser, “Deep water formation and exchange rates in the Greenland/Norwegian Seas and Eurasian Basin of the Arctic Ocean derived from tracer balances,” Prog. Oceanography, 35, 29–52 (1995).CrossRefGoogle Scholar
  11. V. S. Brezgunov, V. K. Debolskii, V. V. Nechaev, et al., “Characteristics of the formation and salinity upon mixing of sea and river waters in the Barentz and Kara Seas,” Water Res. 9 (4), 335–344 (1983).Google Scholar
  12. L. W. Cooper, T. E. Whitledge, J. M. Grebmeier, and T. Weingartner, “The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait,” J. Geophys. Res. 102, 12563–12573 (1997).CrossRefGoogle Scholar
  13. L. W. Cooper, J. W. McClelland, R. M. Holmes, P. A. Raymond, J. J. Gibson, C. K. Guay, and B. J. Peterson, “Flow-weighted values of runoff tracers (d18O, DOC, Ba, alkalinity) from the six largest Arctic rivers,” Geophys. Res. Lett. 35 (2008).Google Scholar
  14. H. Craig and L. Gordon, “Deuterium and oxygen-18 variations in the ocean and the marine atmosphere,” Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoletto, Italy, Ed. by E. V. Tongiogi and E. F. Lishi (CNR, Pisa, 1965), pp. 9–130.Google Scholar
  15. W. Dansgaard, “Sable isotopes in precipitation,” Tellus, 19, 435–463 (1964).Google Scholar
  16. R. R. Dickson and J. Brown, “The production of North Atlantic Deep Water: sources, rates, and pathways,” J. Geophys. Res. 99(6), 12319–12341 (1994).CrossRefGoogle Scholar
  17. T. Dittmar and G. Kattener, “The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review,” Marine Chem. 83, 103–120 (2003).CrossRefGoogle Scholar
  18. A. V. Dubinin and E. O. Dubinina, “Isotope composition of oxygen and hydrogen in the Black Sea waters as a result of the dynamics of water masses,” Oceanology 54 (6), 713–729 (2014).CrossRefGoogle Scholar
  19. A. V. Dubinin, E. O. Dubinina, T. P. Demidova, N. M. Kokryatskaya, M. N. Rimskaya-Korsakova, S. A. Kossova, and E. V. Yakushev, “Stable isotope evidence for the Bottom Convective Layer homogeneity in the Black Sea,”Geochem.Trans. 15 (3), (2014).Google Scholar
  20. E. O. Dubinina, S. A. Kossova, A. Yu. Miroshnikov and R. V. Fyaizullina, “Isotope parameters (δD, δ18O) and sources of freshwater input to Kara Sea,” Oceanology, 57 (1), 31–40 (2017).CrossRefGoogle Scholar
  21. B. Ekwurzel, P. Schlosser, R. Mortlock, and R. Fairbanks, “River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean,” J. Geophys. Res. 106 (C5), 9075–9092 (2001).CrossRefGoogle Scholar
  22. H. Erlenkeuser, R. F. Spielhagen, and E. Taldenkova, “Stable isotopes in modern water and bivalve samples from the southern Kara Sea,” Rep. Polar Res. 300, 80–90 (1999).Google Scholar
  23. M. V. Flint and S. G. Poyarkov, “Comprehensive research on the Kara Sea ecosystem (128th Cruise of research vessel Professor Shtokman),” Oceanology, 55 (4), 657–659 (2015).CrossRefGoogle Scholar
  24. R. D. Frew, P. F. Dennis, K. J. Heywood, et al., “The oxygen isotope composition of water masses in the northern North Atlantic,” Deep-Sea Res. 47, 2265–2286 (2000).CrossRefGoogle Scholar
  25. V. V. Gordeev, J. M. Martin, I. S. Sidorov, and M. V. Sidorova, “A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean,”Amer. J. Sci. 296, 664–691 (1996).CrossRefGoogle Scholar
  26. D. Hazlick and K. Aagard, “Freshwater and Atlantic water in the Kara Sea,” J. Geophys. Res. 85(9), 4937–4932 (1980).CrossRefGoogle Scholar
  27. J. Horita, D. J. Wesolowski, and D. R. Cole, “The activitycomposition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: I. Vapor-liquid water equilibration of single salt solutions from 50 to 100°C,” Geochim. Cosm. Acta 57, 2797–2817 (1993a).CrossRefGoogle Scholar
  28. J. Horita, D. R. Cole, and D. J. Wesolowski, “The activitycomposition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II. Vapor-liquid water equilibration of mixed salt solutions from 50 to 100°C and geochemical implications,” Geochim. Cosmochim. Acta, 57, 4703–4711 (1993b).CrossRefGoogle Scholar
  29. M. A. Johnson and I. V. Polyakov, “The Laptev Sea as a source for recent Arctic Ocean salinity changes,” Geophys. Res. Lett. 28 (10), 2017–2020 (2001).CrossRefGoogle Scholar
  30. E. P. Jones, B. Rudels, and L. G. Anderson, “Deep water of the Arctic ocean: origins and circulation,” Deep-Sea Res. 42 (5), 737–760 (1995).CrossRefGoogle Scholar
  31. M. Lehmann and U. Siegenthaler, “Equilibrium oxygenand hydrogen-isotope fractionation between ice and water,” J. Glac. 37, 23–26 (1991).CrossRefGoogle Scholar
  32. R. Létolle, J. Martin, A. Thomas, V. Gordeev, S. Gusarova, and I. Sidorov, “18O abundance and dissolved silicate in the Lena delta and Laptev Sea (Russia),” Marine Chem. 43, 47–64 (1993).CrossRefGoogle Scholar
  33. T. Mueller-Lupp, H. Erlenkeuser, and H. A. Bauch, “Seasonal and interannual variability of Siberian river discharge in the Laptev Sea inferred from stable isotopes in modern bivalves,” Boreas 32 (2), 292–303 (2003).CrossRefGoogle Scholar
  34. L. A. Mysak, T. F. Stoker, and F. Huang, “Century-scale variability in a randomly forced, two-dimensional thermohaline ocean circulation model,” Climate Dynamics 8, 103–116 (1993).CrossRefGoogle Scholar
  35. H. G. Ostlund and G. Hut, “Arctic ocean water mass balance from isotope data,” J. Geophys. Res. 89, 6373–6381 (1984).CrossRefGoogle Scholar
  36. V. K. Pavlov and S. L. Pfirman, “Hydrographyc structure and variability of the Kara Sea: Implications for pollutant distribution,” Deep-Sea Res. 42 (6), 1369–1390 (1995).Google Scholar
  37. Peterson, R. G. “The Subantarctic and Polar fronts in reletion to deep water masses through the southwestern Atlantic,” J. Geophys. Res. 94(8), 10817–10838 (1989).CrossRefGoogle Scholar
  38. A. C. Redfield and I. Friedman, “The effect of meteoric water, melt water and brine on the composition of polar sea water and of the deep waters of the ocean,” Deep- Sea Res., 16, 197–214 (1969).Google Scholar
  39. U. Schauer, H. Loeng, B. Rudels, V. K. Ozhigin, and W. Dieek, “Atlantic water flow through the Barents and Kara seas,” Deep-Sea Res. 1 (49), 2281–2298 (2002).CrossRefGoogle Scholar
  40. B. R. Schone, A. D. Freyre Castro, J. Fiebig, S. D. Houk, W. Oschmann, and I. Kröncke, “Sea surface water temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea),” Palaeogeography, Palaeoclimatology, Palaeoecology 212, 215–232 (2004).CrossRefGoogle Scholar
  41. J. Simstich, V. Stanovoy, D. Bauch, H. Erlenkeuser, and F. Spielhagen, “Holocene variability of bottom water hydrography on the Kara Sea shelf (Siberia) depicted in multiple single-valve analyses of stable isotopes in ostracods,” Marine Geol. 206, 147–164 (2004).CrossRefGoogle Scholar
  42. J. Simstich, I. Harms, M. J. Karcher, H. Erlenkeuser, V. Stanovoy, L. Kodina, D. Bauch, and F. Spielhagen, “Recent freshening in the Kara Sea (Siberia) recorded by stable isotopes in Arctic bivalve shells,” J. Geophys. Res. 110, C08006 (2005)CrossRefGoogle Scholar
  43. A. H. Truesdell, “Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures: consequences for isotope geochemistry,” Earth Planet. Sci. Lett. 23, 387–396 (1974).CrossRefGoogle Scholar
  44. A. G. Zatsepin, P. O. Zavialov, V. V. Kremenetskiy, S. G. Poyarkov, and D. M. Soloviev, “The upper desalinated layer in the Kara Sea,” Oceanology, 50 (5), 657–667 (2010).CrossRefGoogle Scholar
  45. A. G. Zatsepin, V. V. Kremenetskiy, A. A. Kubryakov, S. V. Stanichny, and D. M. Soloviev, “Propagation and transformation of waters of the surface desalinated layer in the Kara Sea,” Oceanology 55 (4), 450–460 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. O. Dubinina
    • 1
  • S. A. Kossova
    • 1
  • A. Yu. Miroshnikov
    • 1
  • N. M. Kokryatskaya
    • 2
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy and GeochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Federal Center for Integrated Arctic ResearchRussian Academy of SciencesArkhangelskRussia

Personalised recommendations