Advertisement

Geochemistry International

, Volume 55, Issue 11, pp 1000–1009 | Cite as

Origin of corundum rocks of the Belomorian mobile belt: Evidence from noble gas isotope geochemistry

  • E. Yu. Akimova
  • E. N. Kozlov
  • K. I. Lokhov
Article

Abstract

The noble gas isotopic composition is studied in gas-liquid microinclusions from minerals of the corundum-bearing and host rocks of the Khitoostrov occurrence, North Karelia. It was established for the first time that fluid participating in the formation of rocks with anomalous oxygen isotopic composition is devoid of an atmospheric component, while helium and neon show significant fractionation relative to argon. The formation of rocks with extremely light oxygen isotope composition was related to the effect of endogenous fluid.

Keywords

noble gas isotopic geochemistry extremely light oxygen corundum-bearing metasomatites Belomorian mobile belt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yu. Akimova and Lokhov, K. I. “Ultralight oxygen in corundum-bearing rocks of North Karelia, Russia, as a result of isotope separation by thermal diffusion (Soret effect) in endogenous fluid flow,” MSCE 3 (12), 42–47 (2015).CrossRefGoogle Scholar
  2. I. A. Baksheev, V. I. Ustinov, O. S. Dolgova, V. S. Balitskii, and I. A. Ekimenkova, “Oxygen isotope composition as indicator of corundum genesis,” Vestn. Otd. Nauk Zemle Ross. Akad. nauk 1 (24), 1–2 (2006).Google Scholar
  3. C. J. Ballentine, and P. Burnard, “Production, release and transport of noble gases in the continental crust,” Rev. Mineral. Geochem. 47, 481–538 (2002).CrossRefGoogle Scholar
  4. M. Baolei, S. Jian, W. Guanyu, Y. Guohan, and A. Yongfu, “A skarn-type lead-zinc deposit related to low 18O magma,” Chin. Sci. Bull. 42 (19), 1636–1640 (1997).CrossRefGoogle Scholar
  5. S. Becker, J. Urai, K. Scholz, and P. Kukla, “Crack-seal microstructure evolution in multiphase rocks: an example of quartz-chlorite veins formed at the brittle-ductile transition,” Geophys. Res. Abstr. 11 (2009).Google Scholar
  6. I. N. Bindeman and N. S. Serebryakov, “Geology, petrology and O and H isotope geochemistry of remarkably 18O depleted Paleoproterozoic rocks of the Belomorian Belt, Karelia, Russia, attributed to global glaciation 2.4 Ga,” Earth Planet. Sci. Lett. 306, 163–174 (2011).CrossRefGoogle Scholar
  7. I. N. Bindeman, N. S. Serebryakov, A. K. Schmitt, J. A. Vazquez, Y. Guan, P. Ya. Azimov, B. Yu. Astafiev, J. Palandri, and L. Dobrzhinetskaya, “Field and microanalytical isotopic investigation of ultradepleted in 18O Paleoproterozoic “Slushball Earth” rocks from Karelia, Russia,” Geosphere 10, 308–339 (2014).CrossRefGoogle Scholar
  8. S. Yu. Budnitskii, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Dal’nevost. Geol. Inst., Vladivostok, 2013)[in Russian].Google Scholar
  9. A. I. Buikin, J. Hopp, N. V. Sorokhtina, M. Trieloff, and L. N. Kogarko, “Primordial and radiogenic noble gases in fluid inclusions in Seblyavr massive carbonatites and pyroxenites,” in Alkaline Magmatism of the Earth and Related Strategic Metal Deposits. Proceedings of XXXII International Conference, Ed. by L. N. Kogarko (GEOKHI RAS, Moscow, 2015), pp. 26–28.Google Scholar
  10. M. V. Burtseva, G. S. Ripp, V. F. Posokhov, and A. E. Murzintseva, “Nephrites of East Siberia: geochemical features and problems of genesis,” Russ. Geol. Geophys. 56(3), 402–410 (2015).CrossRefGoogle Scholar
  11. E. O. Dubinina, A. L. Perchuk, and O. S. Korepanova, “Oxygen Isotopes effects due to dehydration of the blueschist: the experimental data under P–T conditions of subduction zone,” Dokl. Earth Sci. 444 (5), 734–737 (2012).CrossRefGoogle Scholar
  12. K. A. Farley, J. Libarkin, S. Mukhopadhyay, and W. Amidon, “Cosmogenic and nucleogenic 3He in apatite, titanite, and zircon,” Earth Planet. Sci. Lett. 248, 451–461 (2006).CrossRefGoogle Scholar
  13. G. Faure, Principles of Isotope Geology (Wiley, New York, 1986).Google Scholar
  14. E. Frost, J. Dolan, L. Ratschbacher, B. Hacker, and G. Seward, “Direct observation of fault zone structure at the brittle-ductile transition along the Salzach–Ennstal–Mariazell–Puchberg fault system, Austrian Alps,” J. Geophys. Res. 116, 1–15 (2011).CrossRefGoogle Scholar
  15. B. Fu, N. T. Kita, S. A. Wilde, X. Liu, J. Cliff, and A. Greig, “Origin of the Tongbai–Dabie–Sulu Neoproterozoicм low-δ18O igneous province, east-central China,” Contrib. Mineral. Petrol. 165, 641–662 (2012).CrossRefGoogle Scholar
  16. D. Harrison, P. Burnard, M. Trieloff, G. Turner, “Resolving atmospheric contaminants in mantle noble gas analyses,” Geochem. Geophys. Geosyst. 4 (3), 1–17 (2003).CrossRefGoogle Scholar
  17. I. A. Izbrodin, G. S. Ripp, A. G. Doroshkevich, and V. F. Posokhov, “Oxygen and hydrogen isotope compositions of metamorphosed high-aluminous rocks of southwestern Transbaikalia,” Dokl. Earth Sci. 459, 1460–1463 (2014).CrossRefGoogle Scholar
  18. D. P. Krylov, E. B. Sal’nikova, A. M. Fedoseenko, S. Z. Yakovleva, Yu. V. Plotkina, and I. V. Anisimova, “Age and origin of the corundum-bearing rocks of Khitoostrov Island, Northern Karelia,” Petrology 19 (1), 79–86 (2011).CrossRefGoogle Scholar
  19. D. P. Krylov, V. A. Glebovitskii, S. G. Skublov, and E. V. Tolmacheva, “Rare-earth and rare elements in zircons of different ages from corundum-bearing rocks of Khitoostrov (Northern Karelia),” Dokl. Earth Sci. 443, 406–411 (2012).CrossRefGoogle Scholar
  20. V. K. Lebedev, N. A. Kalmykova, and Yu. V. Nagaitsev, Corundum–staurolite–hornblende schists of the Belomorian Complex,” Sov. Geologiya 9, 78–89 (1974).Google Scholar
  21. K. I. Lokhov and L. K. Levsky, “Carbon and heavy noble gas isotopes in methamorphic fluids,” Geochem. Int. 33 (3), 23–31 (1996).Google Scholar
  22. K. I. Lokhov, E. M. Prasolov, E. Yu. Akimova, D. K. Lokhov, and S. A. Bushmin, Isotopically and element fractionated He, Ne, and Ar in fluid mineral inclusions from metamorphic rocks of Northern Karelia with extremely isotopically light oxygen: cascade thermal diffusion isotope fractionation in endogenic fluid,” Vestn. St. Petersb. Gos. Univ., Ser 7. Geol. Geofraf., No. 1, 29–47 (2016).Google Scholar
  23. N. V. Lubnina, “Remagnetization of rocks of the East European craton, Vestn. KRAUNTS, Nauki Zemle 2 (14), 19–28 (2009).Google Scholar
  24. Yu. V. Miller, “Late Archean nappe structure of the Belomorian Mobile Belt,” Vestn. St. Petersb. Gos. Univ., Ser 7. Geol. Geofraf., 3 (21), 28–40 (1997).Google Scholar
  25. S. Niedermann, “Cosmic-ray-produced noble gases in terrestrial rocks: dating tools for surface processes,” Rev. Mineral. Geochem. 47, 731–784 (2002).CrossRefGoogle Scholar
  26. M. Ozima and Podosek, F. A. Noble Gas Geochemistry, 2nd ed., Cambridge Univ. Press, Cambridge, 1983)Google Scholar
  27. E. M. Prasolov, K. I. Lokhov, and V. A. Krupenik, “Helium and argon isotope composition of halite,” Paleoproterozoic Onega Structure (Geology, Tectonics, Deep Structure, and Mineralogy), Ed. By L. V. Glushanin, N. V. Sharov, and V. V. Shchiptsova, (Karel’sk. Nauchn. Ts., Petrozavodsk), 2011), pp. 248–250 [in Russian].Google Scholar
  28. N. S. Serebryakov and V. L. Rusinov, “High-grade calcium–sodium metasomatism and corundum formation in the Precambrian Belomorian Mobile Belt, Karelia,” Dokl. Earth Sci. 395, 389–393 (2004).Google Scholar
  29. N. S. Serebryakov, B. Yu. Astaf’ev, O. A. Voinova, and S. L. Presnyakov, “First Th–U–Pb single zircon dating of metasomatites from the Belomorian Mobile Belt,” Dokl. Earth Sci. 413, 388–392 (2007).CrossRefGoogle Scholar
  30. A. I. Slabunov, Geology and Geodynamics of Archean Mobile Belts by the Example of the Belomorian province of the Fennoscandian Shield (Karel’sk. Nauchn. Ts.,Petrozavodsk, 2008) [in Russian].Google Scholar
  31. E. N. Terekhov, “REE distribution in corundum-bearing and other metasomatic rocks during the exhumation of metamorphic rocks of the Belomorian Belt, Baltic Shield,” Geochem. Int. 45 (4), 364–380 (2007).CrossRefGoogle Scholar
  32. E. N. Terekhov, and V. I. Levitsky, “Geological–structural regularities in the distribution of corundum mineralization in the Northwestern Belomorian Zone,” Izv. Vyssh. Uchebn. Zaved. Geol. Razved., No. 6, 3–13(1991).Google Scholar
  33. A. B. Verchovsky, and Yu. A. Shukolyukov, Element and Isotope Fractionation of Noble Gases in Nature (Nauka, Moscow, 1991)[in Russian].Google Scholar
  34. S. V. Vysotskiy, A. V. Ignat’ev, V. I. Levitskii, S. Yu. Budnitskii, and T. A. Velivetskaya, “New data on stable isotopes in minerals from corundum-bearing formations of Northern Karelia (Russia),” Dokl. Earth Sci. 439 (1), 964–966 (2011).CrossRefGoogle Scholar
  35. S. V. Vysotskiy, A. V. Ignat’ev, V. I. Levitskii, V. P. Nechaev, T. A. Velivetskaya, and V. V. Yakovenko, “Geochemistry of stable oxygen and hydrogen isotopes in minerals and corundum-bearing rocks in Northern Karelia as an indicator of their unusual genesis,” Geochem. Int. 52 (9), 773–782 (2014).CrossRefGoogle Scholar
  36. W. M. White, Geochemistry. Online Textbook (Cornell University, New York, 2009), pp, 350–364.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversityInstitute of Earth ScienceSt. PetersburgRussia
  3. 3.Geological Institute, Kola CenterRussian Academy of SciencesApatityRussia

Personalised recommendations