Geochemistry International

, Volume 55, Issue 7, pp 663–668 | Cite as

Evolution of pyroxene in peralkaline magmatic system: An example of an agpaitic syenite dyke complex and the Niva intrusion, Kola Peninsula

Short Communications
  • 50 Downloads

Abstract

The paper presents pioneering data on the composition of pyroxenes and the distribution of trace elements in this mineral in small geological bodies that were formed by single magma injections and their subsequent rapid crystallization: the Niva intrusion and an agpaitic syenite dyke. The pyroxene is highly alkaline and shows continuous compositional trends with an increase in the aegirine concentration. The Ti concentrations of the pyroxene are much higher than in pyroxenes in agpaitic syenites in other alkaline complexes. In spite of the fact that the pyroxene is hosted in small bodies, the evolution of these pyroxenes was similar to that of pyroxenes in the Lovozero and Khibina alkaline massifs.

Keywords

alkaline magmatism evolution of alkaline pyroxenes Kola Alkaline Province 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. I. Akimenko, L. N. Kogarko, N. V. Sorokhtina, N. N. Kononkova, and V. P. Mamontov, “A new occurrence of alkaline magmatism on the Kola Peninsula: an agpaitic dyke in the Kandalaksha Region,” Dokl. Earth Sci. 458 (1), 1125–1129 (2014).CrossRefGoogle Scholar
  2. A. A. Arzamastsev, F. Bea, V. N. Glaznev, L. Arzamastseva, and P. Montero, “Paleozoic Kola alkaline province: composition of primary mantle magmas and conditions of magma formation,” Ross. Zh. Nauk Zemle 3 (1), 1–32 (2001).Google Scholar
  3. A. A. Arzamastsev, B. V. Belyatsky, and L. V. Arzamastseva, “Agpaitic magmatism in the northeastern Baltic Shield: a study of the Niva intrusion, Kola Peninsula, Russia,” Lithos 51, 27–46 (2000).CrossRefGoogle Scholar
  4. R. J. Brousse and P. H. Ranqon, “Crystallization trends of pyroxenes from agpaitic phonolites (Cantal, France),” Mineral. Mag. 48, 39–45 (1984).CrossRefGoogle Scholar
  5. A. R. Chakhmouradian, “High-field elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites,” Chem. Geol. 235, 138–160 (2006).CrossRefGoogle Scholar
  6. A. K. Ferguson, “The natural occurrence of aegirine–neptunite solid solution,” Contrib. Mineral. Petrol. 60, 247–253 (1977).CrossRefGoogle Scholar
  7. L. N. Kogarko, “Geochemistry of fractionation of coherent elements (Zr and Hf) during the profound differentiation of peralkaline magmatic systems: a case study of the Lovozero Complex,” Geochem. Int. 54 (1), 1–6 (2016).CrossRefGoogle Scholar
  8. L. N. Kogarko, C. T. Williams, and A. R. Wooley, “Compositional evolution and cryptic variation in pyroxenes of the peralkaline Lovozero intrusion, Kola Peninsula, Russia,” Mineral. Mag. 70, 347–359 (2006).CrossRefGoogle Scholar
  9. D. S. Korzhinskii, “Acid–base interaction of components in silicate melts and direction of cotectic lines,” Dokl. Akad. Nauk SSSR 128 (2), 383–386 (1959).Google Scholar
  10. L. M. Larsen, “Clinopyroxenes and coexisting mafic minerals from the alkaline Ilimaussaq intrusion, South Greenland,” J. Petrol. 17, 258–290 (1976).CrossRefGoogle Scholar
  11. U. Mann, M. Marks, G. Markl, “Influence of oxygen fugacity on mineral compositions in peralkaline melts: The Katzenbuckel volcano, Southwest Germany,” Lithos 91, 262–285 (2006).CrossRefGoogle Scholar
  12. M. Marks and G. Markl, “Fractionation and assimilation processes in the alkaline augite syenite unite of the Ilimaussaq intrusion, South Greenland, as deduced from phase equilibria,” J. Petrol. 10, 1947–1969 (2001).CrossRefGoogle Scholar
  13. E. Njonfang and C. Moreau, “The mafic mineralogy of the Pande Massif, Tikar Plain, Cameroon,” Mineral. Mag. 64, 525–537 (2000).CrossRefGoogle Scholar
  14. D. Stephenson, “Alkali clinopyroxenes from nepheline syenites of the South Qoroq Centre, South Greenland,” Lithos 5, 187–201 (1972).CrossRefGoogle Scholar
  15. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc., London, Sp. Publ. 42, 313–345 (1989).CrossRefGoogle Scholar
  16. V. N. Yakovenchuk, G. Yu. Ivanyuk, Ya. A. Pakhomovskii, Yu. P. Men’shikov, N. G. Konopleva, and Yu. A. Korchak, “Pyroxenes of the Khibiny alkaline massif (Kola Peninsula, Russia), Zap. Ross. Mineral O-va 2, 96–113 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. I. Filina
    • 1
  • L. N. Kogarko
    • 1
  • N. N. Kononkova
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI)Russian Academy of SciencesMoscowRussia

Personalised recommendations