Advertisement

Geochemistry International

, Volume 55, Issue 6, pp 589–594 | Cite as

Factors of 18O/16O fractionation in corundum estimated from the calculation of isotopic shifts on vibration frequencies

  • D. P. Krylov
  • V. A. Glebovitskii
  • E. Yu. Akimova
Short Communications
  • 45 Downloads

Abstract

The β-factors of corundum were estimated on the basis of DFT calculations of vibrational frequency changes due to 16O–18O isotope substitution in a harmonic approximation using an all-electron Gaussian-type basis set and the B3LYP hybrid functional (the CRYSTAL program). Calculations were performed accounting for eight phonon wave vectors within the first Brillouin zone. The results are approximated by the relation 1000ln β crn = 9.19874x–0.12326x 2 + 0.00213x 3 (x = 106/T(K)2, 400 < T(K) < 1300), which can be used in isotope geochemical studies in combination with the known temperature effects on the β-factors of other phases.

Keywords

isotope geothermometry corundum fractionation factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Blanchard, F. Poitrasson, M. Méheut, M. Lazzeri, F. Mauri, and E. Balan, “Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): a first-principles density functional theory study,” Geochim. Cosmochim. Acta 73 (21), 6565–6578 (2009).CrossRefGoogle Scholar
  2. M. Blanchard, G. Morin, M. Lazzeri, and E. Balan, “Firstprinciples study of the structural and isotopic properties of Al- and OH-bearing hematite,” Geochim. Cosmochim. Acta 74 (14), 3948–3962 (2010).CrossRefGoogle Scholar
  3. T. Chacko, D. R. Cole, and J. Horita, “Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems,” in Stable Isotope Geochemistry, Ed. by J. W. Valley and D.R. Cole, Rev. Mineral. Geochem. 43 (1), 1–81 (2001).Google Scholar
  4. R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noel, M. Causa, M. Rerat, and B. Kirtman, “CRYSTAL14: A program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114 (19), 1287–1326 (2014a).CrossRefGoogle Scholar
  5. R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, M. Causà, and Y. Noël, “CRYSTAL14 User’s Manual,” (University of Torino, Torino, 2014b).Google Scholar
  6. S. W. Kieffer, “Thermodynamics and lattice vibrations of minerals: 5. Applications to phase equilibria, isotopic fractionation, and high-pressure thermodynamic properties,” Rev. Geophys. Space Phys. 20 (4), 827–849 (1982).CrossRefGoogle Scholar
  7. B. Montanari, B. Civalleri, C. M. Zicovich-Wilson, and R. Dovesi, “Influence of the exchange-correlation functional in all-electron calculations of the vibrational frequencies of corundum (α-Al2O3),” Int. J. Quantum Chem. 106 (7), 1703–1714 (2006).CrossRefGoogle Scholar
  8. V. B. Polyakov and V. I. Ustinov, “Isotope equilibrium constants (β18O-factors) of corundum,” Geochem. Int. 35 (10), 897–903 (1997).Google Scholar
  9. S. P. S. Porto and R. S. Krishnan, “Raman effect of corundum,” J. Chem. Phys. 47 (3), 1009–1012 (1967).CrossRefGoogle Scholar
  10. M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61 (12), 8187–8201 (2000).CrossRefGoogle Scholar
  11. Y.-F. Zheng “Calculation of oxygen isotope fractionation in metal oxides,” Geochim. Cosmochim. Acta 55 (8), 2299–2307 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. P. Krylov
    • 1
  • V. A. Glebovitskii
    • 1
    • 2
  • E. Yu. Akimova
    • 1
    • 2
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations