Geochemistry International

, Volume 55, Issue 6, pp 548–558 | Cite as

Organic matter in Upper Devonian deposits of the Chernyshev Ridge

  • D. A. BushnevEmail author
  • N. S. Burdel’naya
  • A. V. Zhuravlev


The study provides the first data on organic matter from Upper Devonian deposits of the Shar’yu River section (Chernyshev Ridge, Northern Urals). Oil shales from the Middle and Middle–Upper Domanik intervals and carbonaceous shales from the Upper Frasnian intervals were analyzed. The biomarker analysis revealed similar characteristics of organic matter from studied samples and Domanik-facies rocks of the Ukhta area. It was also shown that organic matter from the studied Domanik section is characterized by compositional heterogeneity. The biomarker and stable carbon isotope compositions of bitumen extracts, their fractions, and kerogen of the Middle and Middle–Upper Domanik shales are different from those of the Upper Frasnian shale, which may indicate the variation in depositional setting.


Domanik Chernyshev Ridge biomarkers carbon isotope composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Aycard, S. Derenne, C. Largeau, T. Mongenot, N. Tribovillard, and F. Baudin, “Formation pathways of protokerogens in Holocene sediments of the upwelling influenced Cariaco Trench, Venezuela,” Org. Geochem. 34, 701–718 (2003).CrossRefGoogle Scholar
  2. T. K. Bazhenova, V. K. Shimanskii, V. F. Vasil’eva. A. I. Shapiro, L. A. Yakovleva, and L. I. Klimova, Organic Geochemistry of the Timan–Pechora Basin (VNIGRI, St. Petersburg, 2008) [in Russian].Google Scholar
  3. N. V. Belyaeva, A. L. Korzun, and L. V. Petrova, Model of Sedimentation of the Frasnian–Tournaisan Sediments on the Northeastern European Platform in Relation with Formation of Reef Reservoirs (Nauka, St. Petersburg, 1998) [in Russian].Google Scholar
  4. L. I. Bogorodskaya, A. E. Kontorovich, and A. I. Larichev, Kerogen. Methods of Study and Geochemical Interpretation (SO RAN, GEO, Novosibirsk, 2005) [in Russian].Google Scholar
  5. D. A. Bushnev, “The composition of biomarkers in bitumen and pyrolysis products of kerogen from the Pechora–Basin Upper Devonian deposits,” Pet. Chem. 42 (5), 291–305 (2002).Google Scholar
  6. D. A. Bushnev, N. S. Burdel’naya, S. N. Shanina, and E. S. Makarova, “Generation of hydrocarbons and hetero compounds by sulfur-rich oil shale in hydrous pyrolysis,” Pet. Chem. 44 (6), 416–425 (2004).Google Scholar
  7. D. A. Bushnev, “Organic matter of the Ukhta domanik,” Dokl. Earth Sci. 426 (4), 677–680 (2009).CrossRefGoogle Scholar
  8. D. A. Bushnev, “Low-molecular products of kerogen pyrolysis,” Izv Komi Nauch, Ts. Ural’sk. Otd. Ross. Akad. Nauk 2 (6), 53–57(2011).Google Scholar
  9. D. A. Bushnev and N. S. Burdel’naya, “Crude oils and organic matter of Late Devonian deposits of the Timan–Pechora Basin: comparison by molecular and isotopic data,” Pet. Chem. 55 (7), 522–529 (2015).CrossRefGoogle Scholar
  10. D. A. Bushnev and S. V. Lyyurov, “Organic geochemistry of Jurassic sedimentary deposits in the Sysola shalebearing region, Komi Republic,” Geochem. Int. 40 (2), 189–195 (2002).Google Scholar
  11. D. A. Bushnev and O. V. Valyaeva, “N-alkylbenzene and 1-n-alkylnaphthalene in the series of Late Devonian oils of the Timan–Pechora province,” Vestn. Inst. Geol. Komi Ural’sk Otd. Ross. Akad. Nauk, No. 10, 17–20 (2015).Google Scholar
  12. D. A. Bushnev, N. S. Burdel’naya, and I. V. Smoleva, “Carbon isotopes fractionation during artificial maturation of organic matter of combustible shales in autoclave in the water presence,” Vestn. Inst Geol. Komi Nauchn. Ts. Ural. Otd. Ross. Akad. Nauk 209 (5), 15–18 (2012).Google Scholar
  13. G. A. Chernov, “Structure and prospects of the petroleum potential of the Timan–Paikhoi province,” Tr. Komi Fil. Akad. Nauk SSSR, 80–95 (1960).Google Scholar
  14. W. G. Deuser, “Cariaco Trench: oxidation of organic matter and residence time of anoxic water,” Nature 242, 601–603 (1973).CrossRefGoogle Scholar
  15. E. M. Galimov, “Isotope organic geochemistry,” Org. Geochem. 37, 1200–1262 (2006).CrossRefGoogle Scholar
  16. J. Golonka, “Cambrian–Neogene: plate tectonic maps,” Wyd 1. Krakowb Wydawn. Uniwersytetu Jagiellonskiego, (2000) [36 plates].Google Scholar
  17. G. N. Gorgadze, Thermolysis of Organic Matter in the Petroleum Geochemistry (IGiRGI, Moscow, 2002) [in Russian].Google Scholar
  18. M. J. L. Hoefs, J. D. H. van Heemst, F. Gelin, M. P. Koopmans, H. M. E. van Kaam-Peters, S. Schouten, J. W. de Leeuw, and J. S. Sinninghe Damsté, “Alternative biological sources for 1,2,3,4-tetramethylbenzene in flash pyrolysates of kerogen,” Org. Geochem. 23, 975–979 (1995).CrossRefGoogle Scholar
  19. S. V. Maksimova, Ecological-Facies Features and Conditions of Domanik Formation (Nauka, Moscow, 1970) [in Russian].Google Scholar
  20. W. L. Orr, “Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils,” in Advances in Organic Geochem. 1985, Ed. by D. Leythauser and J. Rullkotter (Pergamon Press, Oxford, 1986) (Org. Geochem. 10, 499–516).Google Scholar
  21. S. B. Ostroukhov, “On problem of the origin of n-alkylbenzene of C21 composition in oils,” in Proceedings of 7th International Conference “Petroleum Chemistry”, Tomsk, Russia, 2009 (Inst. Optiki Atmosf. SO RAN, Tomsk, 2009), pp. 189–190 [in Russian].Google Scholar
  22. K. E. Peters and J. M. Moldowan, The Biomarker Guide. Intepreting Molecular Fossils in Petroleum and Ancient Sediments (Prentice-Hall, Inc. New Jersey, 1993).Google Scholar
  23. Petroleum Formation in the Domanik-Type Deposits, Ed. By S. G. Neruchev, E. A. Rogozina, G. M. Parparova, I. A Zelichenko et al., (Nedra, Leningrad, 2986) [in Russian]Google Scholar
  24. Al. A. Petrov, Geochemical significance of steranes, in Scientific–Applied Aspects in Petroleum Geochemistry (Moscow, 1991) [in Russian].Google Scholar
  25. A. Schimmelmann, J.-P. Boudou, M. D. Lewan, and R. P. Wintsch, “Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis,” Org. Geochem. 32, 1009–1018 (2001).CrossRefGoogle Scholar
  26. J. S. Sinninghe Damsté, M. P. Koopmans, J. Koster, H.M. E. van Kaam-Peters, F. Kenig, S. Schouten, and J. W. de Leeuw, “Molecular palaeontological evidence for photic zone anoxia in past depositional environments. Palaeoenvironment and source rock occurrence,” in Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History. Selected Papers from the 17th International Meeting on Organic Geochemistry, San Sebastian, Spain, 1995 (Donostia–San Sebastian, 1995), pp. 55–57.Google Scholar
  27. J. S. Sinninghe Damsté, S. G. Wakeham, M. E. L. Kohnen, J. M. Hayes and J. W. Leeuw, “A 6000-year sedimentary molecular record of chemocline excursion in the Black Sea,” Nature 362, 827–829 (1993).CrossRefGoogle Scholar
  28. R. E. Summons and T. G. Powell, “Chlorobiaceae in Palaeozoic seas revealed by biological markers, isotopes and geology,” Nature 319, 763–765 (1986).CrossRefGoogle Scholar
  29. R. E. Summons and T. G. Powell, “Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria,” Geochim. Cosmochim. Acta 51, 557–566 (1987).CrossRefGoogle Scholar
  30. J. Tomic, F. Behar, M. Vandenbroucke, and Y. Tang, “Artificial maturation of Monterey kerogen (Type II-S) in a closed system and comparison with Type II kerogen: implications on the fate of sulfur,” Org. Geochem. 23 (7), 647–660 (1995).CrossRefGoogle Scholar
  31. D. Van de Meent, S. C. Brown, and R. P. Philp, “Pyrolysishigh resolution gas chromatography and pyrolysis gas chromatography-mass spectrometry of kerogens and kerogen precursors,” Geochim. Cosmochim. Acta 44, 999–1013 (1980).CrossRefGoogle Scholar
  32. M. T. J. Van der Meer, S. Schouten, and J. S. Sinninghe Damsté, “The effect of the reversed tricarboxilic asid cycle on the 13C contents of bacterial lipids,” Organic Geochem. 27, 371–397 (1998).Google Scholar
  33. B. E. Van Dongen, S. Schouten, M. Baas, J. A. J. Geenevasen, and J. S. Sinninghe Damsté, “An experimental study of the low-temperature sulfurization of carbohydrates,” Org. Geochem. 34, 1129–1144 (2003).CrossRefGoogle Scholar
  34. H. M. E. Van Kaam-Peters, S. Schouten, J. Koster, and J. S. Sinninghe Damsté, “Controls on the molecular and carbon isotopic composition of organic matter deposited in a Kimmeridgian euxinic shelf sea: evidence for preservation of carbohydrates through sulfurisation,” Geochim. Cosmochim. Acta 62, 3259–3284 (1998).CrossRefGoogle Scholar
  35. D. W. Waples and T. Machihara, “Biomarkers for geologist–a practical guide to the application of steranes and triterpanes in petroleum geology,” AAPG Methods and Exploration, No. 9, (1991).Google Scholar
  36. A. V. Zhuravlev, “Sedimentation model of the junction zone of the Eletsk and Lemva formation zones of the near-Polar Urals in the boundary Devonian–Carboniferous interval,” Neftegaz. Geol. Teor. Praktika 7 (4), (2012). Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. A. Bushnev
    • 1
    Email author
  • N. S. Burdel’naya
    • 1
  • A. V. Zhuravlev
    • 1
  1. 1.Institute of Geology, Komi Scientific Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia

Personalised recommendations