Advertisement

Geochemistry International

, Volume 55, Issue 1, pp 47–59 | Cite as

Polymetamorphism of the Chupa Sequence of the Belomorian mobile belt (Fennoscandia): Evidence from the isotope-geochemical (U-Pb, REE, O) study of zircon

  • S. G. Skublov
  • P. Ya. Azimov
  • X.-H. Li
  • V. A. Glebovitskii
  • A. E. Melnik
Article
  • 38 Downloads

Abstract

U-Pb age and isotope-geochemical features were determined for zircon from kyanite gneisses and amphibolites of the Chupa Sequence of the Belomorian mobile belt (BMB) of the Fennoscandian shield. The cores of the zircon from the gneisses marks the Neoarchean events within 2700–2800 Ma known in the BMB, while those of the amphibolites correspond to the age of magmatic crystallization (2775 ± 12 Ma). The inner rims of zircon from the amphibolites and gneisses likely record two different Neoarchean metamorphic events (2650 ± 8 and 2599 ± 10 Ma, respectively). The outer rims record Paleoproterozoic metamorphism with an age of 1890 Ma, which formed the modern appearance and mineral assemblages of the rock association. The value of δ18O in the zircon from the gneiss is 8.6‰ in cores, slightly decreases to 8.0‰ in inner rims, and sharply decreases to 3.9‰ in outer rims. The value of δ18O in the zircon from the amphibolite is around 6.2‰ in cores, increases up to 8.6 in inner rims, and decreases to 5.2‰ in outer rims. A significant decrease of δ18O is likely related to the anomalous composition of Svecofennian metamorphic fluid restricted to local shear zones. The geochemical features of the zircons in combination with their morphology and anatomy make it possible to distinguish zircon generations of different age and change in metamorphic environments.

Keywords

Belomorian mobile belt Chupa sequence zircon U-Pb method oxygen isotope composition REE composition local methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. V. Balagansky, E. V. Bibikova, S. V. Bogdanov, T. I. Kirnozova, V. A. Markov, and L. V. Sumin, “U-Pb geochronology of Belomorides of the Tupaya Guba area, Lake Kovdozero, North Karelia,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 6, 40–51 (1990).Google Scholar
  2. A. V. Berezin, and S. G. Skublov, “U-Pb age and geochemistry of zircons from the Kem gabbroanorthosite massif, western Belomorian area,” Vestn. St. Petersburg. Gos. Univ., Ser. 7, no. 1, 26–32.Google Scholar
  3. E. V. Bibikova, T. Skiöld, and S. V. Bogdanova, “Age and geodynamic aspects of the oldest rocks in the Precambrian Belomorian Belt of the Baltic (Fennoscandian) Shield,” Geol. Soc. London Spec. Publ. 112, 55–67 (1996).CrossRefGoogle Scholar
  4. E. V. Bibikova, E. Yu. Borisova, G. M. Drugova, and V. A. Makarov, “Metamorphic history and age of aluminous gneisses of the Belomorian Mobile Belt on the Baltic Shield,” Geochem. Int. 35 (9), 775–784 (1997).Google Scholar
  5. E. V. Bibikova, S. Claesson, V. A. Glebovitsky, I. S. Sedova, and A. M. Ruch’ev, “Isotope dating of the Svecofennian metamorphism of the Belomorian Belt, Baltic Shield,” Geochem. Int. Geochem. Int. 39 (10), 1023–1026 (2001).Google Scholar
  6. E. V. Bibikova, S. V. Bogdanova, V. A. Glebovitsky, S. Claesson, and T. Skiöld, “Evolution of the Belomorian Belt: NORDSIM U-Pb zircon dating of the Chupa paragneisses, magmatism, and metamorphic stages,” Petrology 12 (3), 195–210 (2004).Google Scholar
  7. E. V. Bibikova, T. Skiöld, S. V. Bogdanova, G. M. Drugova, and S. B. Lobach-Zhuchenko, “Geochronology of Belomorides: interpretation of multistage geological history,” Geokhimiya, No. 10, 1393–1411 (1993).Google Scholar
  8. I. N. Bindeman and N. S. Serebryakov, “Geology, petrology and O and H isotope geochemistry of remarkably 18O depleted Paleoproterozoic rocks of the Belomorian Belt, Karelia, Russia, attributed to global glaciation 2.4 Ga,” Earth Planet. Sci. Lett. 306, 163–174 (2011).CrossRefGoogle Scholar
  9. I. N. Bindeman, A. K. Schmitt, and D. A. D. Evans, “Limits of hydrosphere-lithosphere interaction: origin of the lowest known d18O silicate rock on Earth in the Paleoproterozoic Karelian rift,” Geology 38, 631–634 (2010).CrossRefGoogle Scholar
  10. I. N. Bindeman, N. S. Serebryakov, A. K. Schmitt, J. A. Vazquez, Y. Guan, P. Ya. Azimov, B. Yu. Astafiev, J. Palandri, and L. Dobrzhinetskaya, “Field and microanalytical isotopic investigation of ultradepleted in 18O Paleoproterozoic “Slushball Earth” rocks from Karelia, Russia,” Geosphere 10 (2), 308–339 (2014).CrossRefGoogle Scholar
  11. A. J. Cavosie, J. W. Valley, N. T. Kita, M. J. Spicuzza, T. Ushikubo, and S. A. Wilde, “The origin of high δ18O zircons: marbles, megacrysts, and metamorphism,” Contrib. Mineral. Petrol. 162, 961–974 (2011).CrossRefGoogle Scholar
  12. F. Corfu, J. M. Hanchar, P. W. O. Hoskin, and P. Kinny, “Atlas of zircon textures,” in Zircon, Ed. by J. M. Hanchar and P. W. O. Hoskin, Rev. Mineral. Geochem. 53, 469–500 (2003).Google Scholar
  13. Early Precambrian of the Baltic Shield, Ed. by V. A. Glebovitskii (Nauka, St Petersburg, 2005) [in Russian].Google Scholar
  14. Y.-Y. Gao, X.-H. Li, W. L. Griffin, S. Y. O’Reilly, and Y.-F. Wang, “Screening criteria for reliable U-Pb geochronology and oxygen isotope analysis in uraniumrich zircons: a case study from the Suzhou A-type granites, SE China,” Lithos 192–195, 180–191 (2014).CrossRefGoogle Scholar
  15. L. L. Grodnitskii, Regularities in the distribution of Svecofennian diaphthorites in the Belomorian mobile belt, in Geology and Mineral Resources of Karelia (IG KarNTS RAN, Petrozavodsk, 1988), pp. 88–95 [in Russian].Google Scholar
  16. R. Kretz “Symbols for rock-forming minerals,” Am. Mineral. 68, 277–279 (1983).Google Scholar
  17. McDonough W. F. and S.-S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).CrossRefGoogle Scholar
  18. D. P. Krylov, E. B. Sal’nikova, A. M. Fedoseenko, S. Z. Yakovleva, Yu. V. Plotkina, and I. V. Anisimova, “Age and origin of the corundum-bearing rocks of Khitostrov Island, Northern Karelia,” Petrology 19 (1), 79–86 (2011).CrossRefGoogle Scholar
  19. D. P. Krylov, V. A. Glebovitskii, S. G. Skublov, and E. V. Tolmacheva, “Rare-earth and rare elements in zircons of different ages from corundum-bearing rocks of Khitoostrov (Northern Karelia),” Dokl. Earth Sci. 443 (3), 406–411 (2012).CrossRefGoogle Scholar
  20. O. A. Levchenkov, O. I. Volodichev, T. F. Zinger, S. Z. Yakovleva, A. F. Makeev, I. K. Shuleshko, and V. I. Kevlich, “Age of metamorphism of aluminous gneisses from the Pon’goma Inlet region of the Belomorian Mobile Belt, Baltic Shield,” Dokl. Earth Sci. 377 (2), 168–171 (2001).Google Scholar
  21. T. A. Myskova, R. I. Mil’kevich, A. B. L’vov, and Yu. V.Miller, “Origin of the Belomorian Chupa Gneiss in the light of new lithogeochemical data,” Lithol. Miner. Resour. 35 (6), 583–593 (2000)CrossRefGoogle Scholar
  22. A. M. Ruch’ev, “Protolith of the North Karelian gneisses of the Chupa Formation, Belomorian Complex,” in Geology and Mineral Resources of Karelia (IG KarNTS RAN, Petrozavodsk, 2000), Vol. 2, pp. 12–25 [in Russian].Google Scholar
  23. N. S. Serebryakov and V. L. Rusinov, “High-grade calcium–sodium metasomatism and corundum formation in the Precambrian Belomorian Mobile Belt, Karelia,” Dokl. Earth Sci. 395A (3), 389–393 (2004).Google Scholar
  24. N. S. Serebryakov and Vs. V. Aristov, “Conditions of localization of collection corundum in the rocks of the Chupa Sequence of the Belomorian Complex, Northern Karelia,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 4, 36–42 (2004).Google Scholar
  25. T. Skiöld, S. Bogdanova, R. Gorbachev, and E. Bibikova, “Timing of late Palaeoproterozoic metamorphism in the northern Belomorian Belt, White Sea region: conclusions from U-Pb isotopic data and P-T evidence,” Bull. Geol. Soc. Finland 73 (1–2), 59–73 (2001).Google Scholar
  26. S. G. Skublov, Yu. B. Marin, O. L. Galankina, S. G. Simakin, T. M. Myskova, and B. Yu. Astaf’ev, “The first discovery of abnormal (Y+REE)-enriched zircons in rocks of the Baltic Shield,” Dokl. Earth Sci. 441 (2), 1724–1731 (2011).CrossRefGoogle Scholar
  27. S. G. Skublov, A. V. Berezin, and N. G. Berezhnaya, “General relations in the trace-element composition of zircons from eclogites with implications for the age of eclogites in the Belomorian Mobile Belt,” Petrology 20 (5), 427–449 (2012).CrossRefGoogle Scholar
  28. A. I. Slabunov, A. V. Stepanova, E. V. Bibikova, I. I. Babarina, and D. I. Matukov, “Neoarchean gabbroids of the Fennoscandian Shield Belomorsk Province: geology, composition, and geochronology,” Dokl. Earth Sci. 423 (8), 1207–1211 (2008).CrossRefGoogle Scholar
  29. A. I. Slabunov, P. Ya. Azimov, V. A. Glebovitskii, L. Zhang, and V. I. Kevlich, “Archaean and Palaeoproterozoic migmatizations in the Belomorian Province, Fennoscandian Shield: petrology, geochronology, and geodynamic settings,” Dokl. Earth Sci. 467(1), 259–263 (2016).CrossRefGoogle Scholar
  30. J. W. Valley, J. S. Lackey, A. J. Cavosie, C. C. Clechenko, M. J. Spicuzza, M. A. S. Basei, I. N. Bindeman, V. P. Ferreira, A. N. Sial, E. M. King, W. H. Peck, A. K. Sinha, and C. S. Wei, “4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon,” Contrib. Mineral. Petrol. 150, 561–580 (2005).CrossRefGoogle Scholar
  31. O. I. Volodichev, Belomorian Complex of Karelia: Geology and Petrology (Nauka, Leningrad, 1990) [in Russian].Google Scholar
  32. S. V. Vysotskiy, A. V. Ignat’ev, V. I. Levitskii, V. P. Nechaev, T. A. Velivetskaya, and V. V. Yakovenko, “Geochemistry of stable oxygen and hydrogen isotopes in minerals and corundum-bearing rocks in Northern Karelia as an indicator of their unusual genesis,” Geochem. Int. 52 (9), 773–782 (2014).CrossRefGoogle Scholar
  33. E. B. Watson, D. A. Wark, and J. B. Thomas, “Crystallization thermometers for zircon and rutile,” Contrib. Mineral. Petrol. 151, 413–433 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. G. Skublov
    • 1
    • 2
  • P. Ya. Azimov
    • 1
  • X.-H. Li
    • 3
  • V. A. Glebovitskii
    • 1
    • 4
  • A. E. Melnik
    • 2
    • 1
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint-Petersburg Mining UniversitySt. PetersburgRussia
  3. 3.State Key Laboratory of Lithospheric EvolutionInstitute of Geology and Geophysics, Chinese Academy of SciencesBeijingChina
  4. 4.St. Petersburg State UniversityInstitute of Earth ScienceSt. PetersburgRussia

Personalised recommendations