Geochemistry International

, Volume 55, Issue 2, pp 211–217 | Cite as

Behavior of lanthanides during the origin of mineralized domes: an example of the Spokoininskoe deposit, Transbaikalia

  • Yu. A. Popova
  • S. S. Matveeva
  • A. Yu. Bychkov
  • M. E. Ternopol’skaya
  • Ya. V. Bychkova
Short Communications


The paper reports data on concentrations of lanthanides in rocks, fluorite, and wolframite from the Spokoininskoe greisen deposit in eastern Transbaikalia. Lanthanide concentrations in the ore-forming fluid are calculated using mineral/fluid distribution coefficients. The data on REE are consistent under the assumption of a single, but evolving, genetic source. The REE concentrations are similar for rocks variably affected by greisenization and are controlled by the solubility of monazite contained in the granite. The younger quartz–albite–muscovite veins and segregations contain elevated concentrations of LREE, which is explained by an increase in the monazite solubility in alkaline solutions during the late evolution of the fluid.


ore-forming (W) fluid rare-earth elements composition of minerals ore-forming processes wolframite deposits greisens 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. A. Beus, E. A. Severov, N. A. Sitnin, and K. D. Subbotin, Albitized and Gresenized Granites (Apogranites) (Akad. Nauk SSSR, Moscow, 1962) [in Russian].Google Scholar
  2. A. Yu. Bychkov, S. S. Matveeva, T. M. Sushchevskaya, S. Yu. Nekrasov, and A. V. Ignat’ev, “Isotopic–geochemical criteria of the filtration dynamics of heterogeneous fluid at greisen mineral deposits,” Geochem. Int. 50 (11), 952–957 (2012).CrossRefGoogle Scholar
  3. V. V. Distler, “Geochemistry of wolframite at the high-temperature rare-metal deposits,” in Mineralogy and Geochemistry of Wolframite Deposits (LGU, Leningrad, 1967), pp. 72–85 [in Russian].Google Scholar
  4. G. R. Kolonin and G. P. Shironosova, “Influence of acidity–alkalinity of solutions on REE distribution during ore formation: thermodynamic modeling,” Dokl. Earth Sci. 443 (2), 502–505 (2012).CrossRefGoogle Scholar
  5. S. S. Matveeva, “Evolution of ore-forming processes at the Akchatau greisen-type deposit: evidence from geochemical indicators,” Petrology 5 (3), 291–300 (1997).Google Scholar
  6. S. S. Matveeva and A. Yu. Bychkov, “Carbon isotope fractionation in fluids during the formation of the Spokoinoe wolframite deposit,” Dokl. Earth Sci. 381A (9), 1057–1059 (2001).Google Scholar
  7. S. S. Matveeva, L. M. Valyashko, and T G. Pavlova, “Interrelations of the roof migmatite-like rocks with greisens of the Spokoinoe deposit (Central Transbaikalia),” Vestn. Mosk. Gos Univ., Ser. 4. Geol., No. 5, 88–92 (1991).Google Scholar
  8. S. S. Matveeva, M. Yu. Spasennykh, T. M. Sushchevskaya, A. Yu. Bychkov, and A. V. Ignat’ev “Geochemical model of the formation of the Spokoininsk tungsten deposit (Eastern Transbaikal region, Russia),” Geol. Ore Deposits 44 (2), 111–131 (2002).Google Scholar
  9. On State and Use of Mineral Resources of the Russian Federation in 2013 (Mineral-Info, Moscow, 201) [in Russian].Google Scholar
  10. Yu. A. Popova, A. Yu. Bychkov, S. S. Matveeva, and T. M. Sushchevskaya, “Behavior of lanthanides during the formation of the Iul’tin Deposit, Chukchi Peninsula,” Geochem. Int. 52 (12), 1078–1083 (2014).CrossRefGoogle Scholar
  11. Yu. A. Popova, A. Yu. Bychkov, and S. S. Matveeva, “Behavior of lanthanides during the formation of the Svetloe Deposit, Chukotka,” Geochem. Int. 54 (8), 732–738 (2016).CrossRefGoogle Scholar
  12. V. V. Potap’ev, “Internal structure and ore potential of the Mesozoic granite massif,” in Granitoid Massifs of Siberia and Mineralization (Nauka, Novosibirsk, 1971), pp. 2–89 [in Russian].Google Scholar
  13. V. Yu. Prokof’ev, A. A. Borovikov, Yu. M. Ishkov, T. I. Getmanskaya, A. S. Borisenko, G. P. Zaraiskii, and D. F. Stupak, “Composition of ore-forming fluid of the Spokoininskoe tungsten deposit (Transbaikalia, Russia),” in Proceedings of 13 th International Conference on Thermobarogeochemistry and 4 th APIFIS Symposium, Moscow, Russia, 2008 (Moscow, 2008), Vol. 2, pp. 104–107.Google Scholar
  14. D. V. Rundqvist, V. K. Denisenko, and I. G. Pavlova, Greisen Deposits (Nedra, Moscow, 1971) [in Russian].Google Scholar
  15. P. Dulski, “Reference materials for geochemical studies: new analytical data by ICP-MS and critical discussion of reference values,” Geostand. Newsl. 25, 87–125 (2001).CrossRefGoogle Scholar
  16. C. J. Hetherington D. E. Harlov, and B. Budzyń “Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition,” Mineral. Petrol. 99, 3–4, 165–184 (2010).CrossRefGoogle Scholar
  17. H. Palme and A. Jones, “Solar system abundances of the elements,” Treatise on Geochemistry. (1), 41–61 (2003).CrossRefGoogle Scholar
  18. L. Raimbault, “Utilization ds spectres de terres rares des mineraux hydrothermaux (apatite, fluorite, scheelite, wolframite) pour la characterisation des fluids mineralisateurs et l’identification des magmas sorses et des processus evolutifs,” Bull. Mineral. 108, 737–744 (1985).Google Scholar
  19. M. L. Williams M. J. Jercinovic, D. E. Harlov, B. Budzyn, and C. J. Hetherington, “Resetting monazite ages during fluid-related alteration,” Chem. Geol. 283 (3/4), 218–225 (2011).CrossRefGoogle Scholar
  20. P. Tropper, C. E. Manning, and D. E. Harlov, “Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O–NaCl at 800°C and 1 GPa: implications for REE and Y transport during high-grade metamorphism,” Chem. Geol. 282, 58–66 (2011).CrossRefGoogle Scholar
  21. S. A. Wood and A. E. Williams-Jones, “The aqueous geochemistry of the rare-earth elements and yttrium 4. Monazite solubility and REE mobility in exhalative massive sulfide-depositing environments,” Chem. Geol. 115, 47–60 (1994).CrossRefGoogle Scholar
  22. E. Pourtier, J.-L. Devidal, and F. Gibert, “Solubility measurements of synthetic neodymium monazite as a function of temperature at 2 kbars, and aqueous neodymium speciation in equilibrium with monazite,” Geochim. Cosmochim. Acta 74, 1872–1891 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. A. Popova
    • 1
  • S. S. Matveeva
    • 1
  • A. Yu. Bychkov
    • 1
    • 2
  • M. E. Ternopol’skaya
    • 1
  • Ya. V. Bychkova
    • 3
  1. 1.Geological FacultyMoscow State UniversityMoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM)Russian Academy of SciencesMoscowRussia

Personalised recommendations