Geochemistry International

, Volume 54, Issue 10, pp 914–921 | Cite as

Interaction of Fe and Fe3C with hydrogen and nitrogen at 6–20 GPa: a study by in situ X-ray diffraction



A method of in situ X-ray diffraction at Spring-8 (Japan) was used to analyze simultaneously the hydrogen incorporation into Fe and Fe3C, as well as to measure the relative stability of carbides, nitrides, sulfides, and hydrides of iron at pressures of 6–20 GPa and temperatures up to 1600 K. The following stability sequence of individual iron compounds was established in the studied pressure and temperature interval: FeS > FeN > FeC > FeH > Fe. A change in the unit-cell volume as compared to the known equations of state was used to estimate the hydrogen contents in carbide Fe3C and hydride FeHx. Data on hydride correspond to stoichiometry with x ≈ 1. Unlike iron sulfides and silicides, the solubility of hydrogen in Fe3C seemed to be negligibly low—within measurement error. Extrapolating obtained data to pressures of the Earth’s core indicates that carbon and hydrogen are mutually incpompatible in the iron–nickel core, while nitrogen easily substitutes carbon and may be an important component of the inner core in the light of the recent models assuming the predominance of iron carbide in its composition.


iron carbide hydride nitride high pressure X-ray diffraction experiment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V. E. Antonov, I. T. Belash, B. K. Ponomarev, E. G. Ponyatovski, and V. G. Thiessen, “Magnetic properties of hydrogen solid solutions in Fe–Ni–Mn alloys,” Phys. Stat. Solid. A 52, 703–710 (1979).CrossRefGoogle Scholar
  2. V. E. Antonov, I. T. Belash, and E. G. Ponyatovsky, “T–P phase diagram of the Fe–H system at temperatures to 450°C and pressures to 67 GPa,” Scripta Metallurgica 16, 203–208 (1982).CrossRefGoogle Scholar
  3. J. Badding, R. Hemley, and H. Mao, “High–pressure chemistry of hydrogen in metals: in situ study of iron hydride,” Science 253, 421–424 (1991).CrossRefGoogle Scholar
  4. J. Badro, A.S. Côté, and J. P. Brodholt “A seismologically consistent compositional model of Earth’s core,” Proc. Nat. Acad. Sci. 111(21), 7542–7545 (2014).CrossRefGoogle Scholar
  5. B. Chen, L. Gao, B. Lavina, P. Dera, E. Alp, E. J. Zhao, and J. Li, “Magneto–elastic coupling in compressed Fe7C3 supports carbon in Earth’s inner core,” Geophys. Res. Lett. 39, L18301, (2012). doi: 10.1029/2012gl052875Google Scholar
  6. D. L. Decker, “High–pressure equation of state for NaCl, KCl, and CsCl,” J. Appl. Phys. 42 (8), 3239–3244 (1973).CrossRefGoogle Scholar
  7. Y. Fukai, “From metal hydrides to the metal–hydrogen system,” J. Less-Common Met. 172, 8–19 (1991).CrossRefGoogle Scholar
  8. Y. Fukai, K. Mori, and H. Shinomiya, “The phase diagram and superabundant vacancy formation in Fe–H alloys under high hydrogen pressures,” J. Alloys Comp. 348 (1), 105–109 (2003).CrossRefGoogle Scholar
  9. N. Hirao, T. Kondo, E. Ohtani, K. Takemura, and T. Kikegawa, “Compression of iron hydride to 80 GPa and hydrogen in the Earth’s inner core,” Geophys. Res. Lett. 31 (6), L06616, (2004). doi: 10.1029/2003GL019380CrossRefGoogle Scholar
  10. J. C. Jamieson, J. N. Fritz, and M. H. Manghnani, “Pressure measurement at high temperature in X–ray diffraction studies: gold as a primary standard,” in High Pressure Research in Geophysics, Ed. by S. Akimoto and M. H. Manghnani (Center for Academic Publications, Tokyo, 1982), pp. 27–48.CrossRefGoogle Scholar
  11. T. Kawazoe and E. Ohtani, “Reaction between liquid iron and (Mg, Fe)SiO3–perovskite and solubilities of Si and O in molten iron at 27 GPa,” Phys. Chem. Mineral. 33 (3), 227–234(2006).CrossRefGoogle Scholar
  12. A. N. Krot, K. Keil, E. R. D. Scott, C. A. Goodrich, and M. K. Weisberg, “Classification of meteorites,” in Treatise on Geochemistry, Ed. by H.D. Holland and K.K. Turekian, (Elsevier–Pergamon, Oxford, 2003), Vol. 1, pp. 83–128.Google Scholar
  13. J. Li and Y. Fei, “Experimental constraints on core composition. Classification of meteorites,” in Treatise on Geochemistry. Ed. by H.D. Holland and K.K. Turekian, (Elsevier–Pergamon, Oxford, 2014), Vol. 3, 527–557.CrossRefGoogle Scholar
  14. K. D. Litasov and A. F. Shatskiy, “Composition of the Earth’s core: a review,” Russ. Geol. Geophys. 57 (1), 22–46 (2016a).CrossRefGoogle Scholar
  15. K. D. Litasov and A. F. Shatskiy, Composition and Structure of the Earth’s Core (SO RAN, Novosibirsk, 2016b) [in Russian].Google Scholar
  16. K. D. Litasov, I. S. Sharygin, P. I. Dorogokupets, A. Shatskiy, P. N. Gavryushkin, T. S. Sokolova, E. Ohtani, J. Li, and K. Funakoshi, “Thermal equation of state and thermodynamic properties of iron carbide Fe3C to 31 GPa and 1473 K,” J. Geophys. Res.: Solid Earth 118 (10), 5274–5284 (2013).CrossRefGoogle Scholar
  17. K. D. Litasov, A. F. Shatskiy, S. G. Ovchinnikov, Z. I. Popov, D. S. Ponomarev, and E. Ohtani, “Phase transformations of iron nitrides Fe3N–Fe4N studied by in situ X–ray diffractions,” JETP Lett. 98 (12), 805–808 (2014).CrossRefGoogle Scholar
  18. S. Minobe, Y. Nakajima, K. Hirose, and Y. Ohishi, “Stability and compressibility of a new iron–nitride ß–Fe7N3 to core pressures,” Geophys. Res. Lett. 42 (13), 5206–5211 (2015).CrossRefGoogle Scholar
  19. E. Ohtani, N. Hirao, T. Kondo, M. Ito, and T. Kikegawa, “Iron–water reaction at high pressure and temperature, and hydrogen transport into the core,” Phys. Chem. Mineral. 32 (1), 77–82 (2005).CrossRefGoogle Scholar
  20. Z. Popov, K. Litasov, P. Gavryushkin, S. Ovchinnikov, and A. Fedorov, “Theoretical study of γ'–Fe4N and ε–FexN iron nitrides at pressures up to 500 GPa,” JETP Letters 101 (6), 371–375 (2015).CrossRefGoogle Scholar
  21. C. Prescher, L. Dubrovinsky, E. Bykova, I. Kupenko, K. Glazyrin, A. Kantor, C. McCammon, M. Mookherjee, Y. Nakajima, and N. Miyajima, “High Poisson’s ratio of Earth’s inner core explained by carbon alloying,” Nature Geosci. 8 (3), 220–223 (2015).CrossRefGoogle Scholar
  22. K. Sakamaki, Takahashi, E. Nakajima, Y. Nishihara, Y. Funakoshi, K. Suzuki, T. and Fukai, Y. “Melting phase relation of FeHx up to 20 GPa: implication for the temperature of the Earth’s core,” Phys. Earth Planet. Inter. 174 (1), 192–201 (2009).Google Scholar
  23. A. Shatskiy, K. D. Litasov, H. Terasaki, T. Katsura, and E. Ohtani, “Performance of semi–sintered ceramics as pressure–transmitting media up to 30 GPa,” High Pressure Res. 30 (3), 443–450 (2010).CrossRefGoogle Scholar
  24. A. Shatskiy, T. Katsura, K. D. Litasov, A. V. Shcherbakova, Y. M. Borzdov, D. Yamazaki, A. Yoneda, E. Ohtani, and E. Ito, “High pressure generation using scaled–up Kawai–cell,” Phys. Earth Planet. Inter. 189 (1–2), 92–108 (2011).CrossRefGoogle Scholar
  25. A. Shatskiy, I. S. Sharygin, P. N. Gavryushkin, K. D. Litasov, Y. M. Borzdov, A. V. Shcherbakova, Y. Higo, K. Funakoshi, Y. N. Palyanov, and E. Ohtani, “The system K2CO3–MgCO3 at 6 GPa and 900–1450°C,” Am. Mineral. 98, 1593–1603 (2013).CrossRefGoogle Scholar
  26. Y. Shibazaki, E. Ohtani, H. Terasaki, R. Tateyama, T. Sakamaki, T. Tsuchiya, and K.–I. Funakoshi, “Effect of hydrogen on the melting temperature of FeS at high pressure: implications for the core of Ganymede,” Earth Planet. Sci. Lett. 301 (1), 153–158 (2011).CrossRefGoogle Scholar
  27. Y. Shibazaki, E. Ohtani, H. Fukui, T. Sakai, S. Kamada, D. Ishikawa, S. Tsutsui, A. Q. R. Baron, N. Nishitani, N. Hirao, and K. Takemura, “Sound velocity measurements in DHCP–FeH up to 70 GPa with inelastic X-ray scattering: implications for the composition of the Earth’s core,” Earth Planet. Sci. Lett. 313, 79–85 (2012).CrossRefGoogle Scholar
  28. T. S. Sokolova, P. I. Dorogokupets, and K. D. Litasov, “Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, b2–NaCl as well as Au, Pt, and other metals to 4 Mbar and 3000 K,” Russ. Geol. Geophys. 54 (2), 181–199 (2013).CrossRefGoogle Scholar
  29. H. Terasaki, Y. Shibazaki, T. Sakamaki, R. Tateyama, E. Ohtani, K.-I. Funakoshi, and Y. Higo, “Hydrogenation of FeSi under high pressure,” Am. Mineral. 96 (1), 93–99 (2011).CrossRefGoogle Scholar
  30. H. Terasaki, E. Ohtani, T. Sakai, S. Kamada, H. Asanuma, Y. Shibazaki, N. Hirao, N. Sata, Y. Ohishi, and T. Sakamaki, “Stability of Fe–Ni hydride after the reaction between Fe–Ni alloy and hydrous phase (δ–AlOOH) up to 1.2 Mbar: possibility of H contribution to the core density deficit,” Phys. Earth Planet. Inter. 194, 18–24 (2012).CrossRefGoogle Scholar
  31. H. Terasaki, Y. Shibazaki, K. Nishida, R. Tateyama, S. Takahashi, M. Ishii, Y. Shimoyama, E. Ohtani, K.-I. Funakoshi, and Y. Higo, “Repulsive nature for Hydrogen incorporation to Fe3C up to 14 GPa,” Isij Int. 54 (11), 2637–2642 (2014).CrossRefGoogle Scholar
  32. S. Urakawa, M. Morishima, T. Kato, A. Suzuki, and O. Shimomura, “Equation of state for h–BN,” Photon Factory Activity Report G275, 383–383 (1993).Google Scholar
  33. S. Urakawa, K. Someya, H. Terasaki, T. Katsura, S. Yokoshi, K. Funakoshi, W. Utsumi, Y. Katayama, Y. Sueda, and T. Irifune, “Phase relationships and equations of state for FeS at high pressures and temperatures and implications for the internal structure of Mars,” Phys. Earth Planet. Inter. 143, 469–479 (2004).CrossRefGoogle Scholar
  34. Y. Zhang and Q.-Z. Yin, “Carbon and other light element contents in the Earth’s core based on first–principles molecular dynamics,” Proc. Natl. Acad. Sci. U. S. A. 109 (48), 19579–19583 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.V.S. Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Faculty of the Earth’s ScienceTohoku UniversitySendaiJapan

Personalised recommendations