Advertisement

Geochemistry International

, Volume 54, Issue 7, pp 640–644 | Cite as

Experimental study of gallium oxide solubility in chloride solutions at 300–400°C

  • M. E. Tarnopolskaia
  • A. Yu. Bychkov
  • Yu. V. Shvarov
Short Communications

Keywords

gallium hydrothermal solution transport species chloride complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Benezeth, I. I. Diakonov, G. S. Pokrovski, J.-L. Dandurand, J. Schott, and I. L. Khodakovsky “Gallium speciation in aqueous solution. Experimental study and modelling: Part 2. Solubility of a-GaOOH in acidic solutions from 150 to 250°C and hydrolysis constants of gallium(III) to 300°C,” Geochim. Cosmochim. Acta 61 (7) 1345–1357 (1997).CrossRefGoogle Scholar
  2. A. Yu. Bychkov and S. S. Matveeva “Thermodynamic Model of the Formation of Ore Bodies at the Akchatau Wolframite Greisen–Vein Deposit,” Geochem. Int. 46 (9) 867–886 (2008).CrossRefGoogle Scholar
  3. A. Yu. Bychkov, S. S. Matveeva, T. M. Suchchevskaya, S. Yu. Nekrasov, and A. V. Ignat’ev “Isotopic–geochemical criteria of the filtration dynamics of heterogeneous fluid at greisen mineral deposits,” Geochem. Int. 50 (11) 952–957 (2012).CrossRefGoogle Scholar
  4. I. I. Diakonov, G. S. Pokrovski, P. Benezeth, J. Schott, J.-L. Dandurand, and J. Escalier, “Gallium speciation in aqueous solution. Experimental study and modelling: Part 1. Thermodynamic properties of to 300°C,” Geochim. Cosmochim. Acta 61 (7), 1333–1343 (1997).CrossRefGoogle Scholar
  5. F. M. Haynes, “A geochemical model for sulfide paragenesis and zoning in the Cu–Fe–As–S system (Tsumeb, South West Africa/Namibia),” Chem. Geol. 47, 183–190 (1984).CrossRefGoogle Scholar
  6. K. A. Kraus, F. Nelson, and G. W. Smith, “Anionexchange studies: IX. Adsorbability of a number of metals in hydrochloric acid solutions,” J. Phys. Chem. 58, 11–17 (1954).CrossRefGoogle Scholar
  7. D. F. C. Morris and B. D. Andrews, “The stability of halide complexes of gallium,” Electrochim. Acta 12, 41–48 (1967).CrossRefGoogle Scholar
  8. S. Yu. Nekrasov and A. Yu. Bychkov “Experimental study of Ga and Al oxide solubility in gas–vapor mixture at 200C,” Geochem. Int. 49 (1) 90–95 (2011).CrossRefGoogle Scholar
  9. S. Yu. Nekrasov, Art. A. Migdisov, A. E. Williams-Jones, and A. Yu. Bychkov, “An experimental study of the solubility of Gallium(III) oxide in HCl-bearing water vapour,” Geochim. Cosmochim. Acta 119, 137–148 (2013).CrossRefGoogle Scholar
  10. Yu. V. Shvarov, “HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by Windows,” Geochem. Int. 46 (8) 898–903 (2008).CrossRefGoogle Scholar
  11. Yu. V. Shvarov, “A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements,” Appl. Geochem. 55, 17–27 (2015).CrossRefGoogle Scholar
  12. S. A. Wood and I. M. Samson, “The aqueous geochemistry of gallium, germanium, indium and scandium,” Ore Geol. Rev. 28, 57–102 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. E. Tarnopolskaia
    • 1
  • A. Yu. Bychkov
    • 1
    • 2
  • Yu. V. Shvarov
    • 1
    • 2
  1. 1.Geological FacultyMoscow State UniversityMoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations