Geochemistry International

, Volume 54, Issue 3, pp 237–256 | Cite as

Ninetyeast ridge: Magmatism and geodynamics

  • N. M. Sushchevskaya
  • O. V. Levchenko
  • E. P. Dubinin
  • B. V. Belyatsky


The study of magmatism and tectonic structure of the East Indian or Ninetyeast Ridge (NER) reveals the geochemical similarity of mantle sources for the NER and Kerguelen Plateau melts. Magmas related to the Kerguelen plume were derived from an enriched mantle source, whereas the NER tholeiitic basalts originated from a source contaminated by a depleted material. While, depleted basalt varieties were not found within the NER basalts. It was shown that magmatic rocks forming the NER were generated by high degrees (30%) of partial melting within the ancient Wharton spreading ridge due to the activity of the Kerguelen plume, which was located at this time in the vicinity of the ridge. The most significant impact of the plume on the NER structures was recorded at 70–50 Ma ago.


oceanic magmatism plumes isotope geochemistry tectonics of the Indian Ocean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. V. Andronikov and S. F. Foley, “Trace element and Nd-Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake area,” Chem. Geol. 175, 291–305 (2001).CrossRefGoogle Scholar
  2. F. Bénard, J. P. Callot, R. Vially, J. Schmitz, W. Roest, M. Patriat, B. Loubrieu, and ExtraPlac Team, “The Kerguelen plateau: records from a long-living/composite microcontinent,” Mar. Petrol. Geol. 27, 633–649(2010).CrossRefGoogle Scholar
  3. A. Yu. Borisova, B. V. Belyatsky, M. V. Portnyagin, and N. M. Suschevskaya, “Petrogenesis of an olivinephyric basalts from the Aphanasey Nikitin Rise: evidence for contamination by cratonic lower continental crust,” J. Petrol. 42 (2), 277–319 (2001).CrossRefGoogle Scholar
  4. A. Yu. Borisova, I. K. Nikogosian, J. S. Scoates, D. Weis, D. Damasceno, N. Shimizu, J. L. R. Touret, et al. “Melt, fluid and crystal inclusions in olivine phenocrysts from Kerguelen plume-derived picritic basalts: evidence for interaction with the Kerguelen Plateau lithosphere,” Chem. Geol. 183, 195–220 (2002).CrossRefGoogle Scholar
  5. K. Bowin, “Origin of the Ninetyeast Ridge from the studies near equator,” J. Geophys. Res. 78 (26), 6029–6043 (1973).CrossRefGoogle Scholar
  6. M. Coffin, M. S. Pringal, R. A. Dungan, T. P. Gladczenko, M. Storey, R. D. Muller, and L. A. Gahagan, “Kerguelen hot spot magma output since 130 Ma,” J. Petrol. 43 (7), 1121–1139 (2002).CrossRefGoogle Scholar
  7. M. Desa, M. V. Ramana, and T. Ramprasad, “Evolution of the Late Cretaceous crust in the equatorial region of the northern Indian Ocean and its implication in understanding the plate kinematics,” Geophys. J. Int. 177, 1265–1278 (2009). doi: 10.1111/j.1365-246X.2009.04096.xCrossRefGoogle Scholar
  8. L. V. Dmitriev, A. V. Sobolev, and N. M. Sushchevskaya, “Conditions of formation of primary melt of oceanic tholeiites and variations of its composition,” Geokhimiya, No. 2, 63–175 (1979).Google Scholar
  9. J. Dyment, J. Lin, and E. T. Baker, “Ridge-hotspot interactions,” Oceanography 20 (1), 102–116 (2007).CrossRefGoogle Scholar
  10. J. Eisele, M. Sharma, S. J. G. Galer, J. Blichert-Toft, C.W. Devey, and A. W. Hofmann, “The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot,” Earth Planet. Sci. Lett. 196, 197–212 (2002).CrossRefGoogle Scholar
  11. D. H. Elliot, T. H. Fleming, P. R. Kyle, and K. A. Foland, “Long-distance transport of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica,” Earth Planet. Sci. Lett. 167, 89–104 (1999).CrossRefGoogle Scholar
  12. F. A. Frey, M. F. Coffin, P. J. Wallace, and D. Weis, “Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broren Ridge, southern Indian Ocean,” Earth Planet. Sci. Lett. 176, 73–89 (2000).CrossRefGoogle Scholar
  13. F. A. Frey, W. B. Jones, H. Davis, and D. Wein, “Geochemical and petrological data for basalts from sites 756, 757 and 758: implications for the origin and evolution of Ninetyeast Ridge,” In: Proceedings ODP Sci. Res., 121, 611–659 (1991).Google Scholar
  14. F. A. Frey, M. Pringle, P. Meleney, S. Huang, and A. Piotrowski, “Diverse mantle sources for Ninetyeast ridge magmatism: geochemical constraints from basaltic glasses,” Earth Planet. Sci. Lett. 144,163–183 (2011).CrossRefGoogle Scholar
  15. Ana D. Gibbons, Udo Paul Barckhausen, Kaj van den Bogaard, Reinhard Hoernle, Joane M. Werner, R. Whittaker, and Müller Dietmar, “Constraining the Jurassic extent of Greater India: tectonic evolution of the West Australian margin Geochemistry Geophysics,” Geosystems. 13(5). Q05W13 (2011). doi: 10.1029/2011GC003919Google Scholar
  16. A. V. Golynsky, M. Chiappini, D. Damaske, et al. “ADMAP–a digital magnetic anomaly map of the Antarctic,” in Antarctica—Contributions to Global Earth Sciences, Ed. by D. K. Futurer, D. Damaske, G. Kleinschmidt, H. Miller, and F. Tessensohn (Springer-Verlag, Berlin, 2006), pp. 109–116.Google Scholar
  17. Rao D. Gopala, K. S. Krishna, and D. Sar, “Crustal evolution and sedimentation history of the Bay of Bengal since the Cretaceous,” J. Geophys. Res. 102, 17747–17768 (1997). doi: doi 10.1029/96JB01339CrossRefGoogle Scholar
  18. J. A. Haplin, A. J. Crawford, N. G. Direen, M. F. Coffin, C. J. Forbes, and I. Borissova, “Naturaliste Plateau, offshore Western Australia: a submarine window into Gondwana assembly and breakup,” Geology 36 (10), 807–810 (2008).CrossRefGoogle Scholar
  19. A. W. Hofmann, “Sampling mantle heterogeneity through oceanic basalts: isotopies and trace elements,” Treat. Geochem. 2, 61–101 (2003).Google Scholar
  20. S. Ingle, D. Weis, and F. A. Frey, “Indian continental crust recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137),” J. Petrol. 43, 1241–1257 (2002a).CrossRefGoogle Scholar
  21. S. Ingle, D. Weis, J. S. Scoates, and F. A. Frey, “Relationship between the early Kerguelen plume and continental flood basalts of the paleo-Eastern Gondwana margins,” Earth Planet. Sci. Lett. 197, 35–50 (2002b).CrossRefGoogle Scholar
  22. P. E. Janney, A. P. Le Roex, and R. W. Carson, “Hafnium isotope and trace element constrains on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13° E to 47° E),” J. Petrol. 46 (12), 2427–2464 (2005).CrossRefGoogle Scholar
  23. V. S. Kamenetsky and R. Maas, “Mantle-melt evolution (Dynamic Source) in the origin of a single MORB suite: a perspective from magnesian glasses of Macquarie island,” J. Petrol. 43 (10), 1909–1922 (2002).CrossRefGoogle Scholar
  24. V. I. Kara, A. I. Pilipenko, and V. S. Shcherbakov, “Structure of the Earth Crust and Sedimentary deposits in the Trans-Indian Transect Band,” Sov. Geologiya, No. 12, 22–29 (1990).Google Scholar
  25. G. L. Kashintsev, Yu. P. Neprochnov, and B. N. Grin’ko, “The origin and evolution of the Ninetyeast Ridge,” Oceanology 40 (6), 850–855 (2000).Google Scholar
  26. E. M. Klein and C. H. Langmuir, “Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness,” J. Geophys. Res. 92 (B4), 8089–8115 (1987).CrossRefGoogle Scholar
  27. K. S. Krishna, H. Abraham, W. W. Sager, M. S. Pringle, F. Frey, D. Gopala Rao, and O. V. Levchenko, “Tectonics of the Ninetyeast Ridge derived from spreading records in adjacent oceanic basins and age constraints of the ridge,” J. Geophys. Res. 117, B04101 (2012). doi: 10.1029/2011JB008805CrossRefGoogle Scholar
  28. K. S. Krishna, Y. P. Neprochnov, D. Gopala Rao, and B. N. Grinko, “Crustal structure and tectonics of the Ninety-East Ridge from seismic and gravity studies,” Tectonics 20 (3), 416–433 (2001).CrossRefGoogle Scholar
  29. O. V. Levchenko, I. M. Sborshchikov, and Yu. G. Marinov, “Tectonics of the Ninety-East Ridge,” Oceanology 54 (2), 231–244 (2014).CrossRefGoogle Scholar
  30. A. V. Luttinen and H. Furnes, “Flood basalts of Vestfjella: Jurassic magmatism across an Achaean–Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica,” J. Petrol. 41 (8), 1271–1305 (2000).CrossRefGoogle Scholar
  31. B. P. Luyendyck and W. Rennick, “Tectonic history of aseismic ridges in the eastern Indian Ocean,” Geol. Soc. Amer. Bull. 88, 1347–1356 (1977).CrossRefGoogle Scholar
  32. J. J. Mahoney, W. B. Jones, F. A. Frey, V. J. M. Salters, D. G. Pyle, and H. L. Davies, “Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the sotherneast Indian Ocean,” Chem. Geol. 120, 315–345 (1995).CrossRefGoogle Scholar
  33. J. J. Mahoney, W. M. White, B. G. J. Upton, C. R. Neal, and R. A. Scrutton, “Beyond EM-1: lavas from Afanasey Nikitin Rise and the Crozet Archipelago, Indian Ocean,” Geology 24, 615–618 (1996).CrossRefGoogle Scholar
  34. W. F. McDonough, “Constraints on the composition of the continental lithospheric mantle,” Earth Planet. Sci. Lett. 101, 1–18 (1990).CrossRefGoogle Scholar
  35. V. E. Milanovsky, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy Inst. Okeanol. Akad. Nauk SSSR, Moscow, 1984)Google Scholar
  36. K. Nicolaysen, S. Bowring, F. Frey, D. Weis, S. Ingle, M. S. Pringle, and M. F. Coffin, “Provenance of Proterozoic garnet-biotite gneiss recovered from Elan Bank, Kerguelen Plateau, southern Indian Ocean,” Geology 29 (3), 235–238 (2001).CrossRefGoogle Scholar
  37. Y. Niu and R. Batiza, “An empirical method for calculations produced beneath mid ocean ridges: applicatioon for axis and off-axis (seamounts) melting,” J. Geophys. Res. 96 (B13), 21753–21777 (1991).CrossRefGoogle Scholar
  38. S. G. Nobre Silva, D. Weis, J. S. Scoates, and J. Barling, “The Ninetyeast Ridge and its relation to the Kerguelen, Amsterdam and St. Paul hotspots in the Indian Ocean,” J. Petrol. 54 (6), 1177–1210 (2013).CrossRefGoogle Scholar
  39. J.-Y. Royer and R. G. Gordon, “The motion and boundary between the Capricorn and Australian plates,” Science 277, 1268–1274 (1997).CrossRefGoogle Scholar
  40. J.-Y. Royer and D. T. Sandwell, “Evolution of the Eastern Indian Ocean since the late Cretaceous: constrains from Geosat altimetry,” J. Geophys. Res. 94 (B10), 13755–13782 (1989).CrossRefGoogle Scholar
  41. W. W. Sager, J. M. Bull, and K. S. Krishna, “Active faulting on the Ninetyeast Ridge and its relation to deformation of the Indo-Australian plate,” J. Geophys. Res. Solid Earth 118, 4648–4668 (2013). doi: 10.1002/jgrb.50319CrossRefGoogle Scholar
  42. A. D. Saunders, M. Storey, I. L. Gibson, et al. “Chemical and isotopic constrains on the origin of basalts from Ninetyeast Ridge, Indian Ocean: result from DSDP Legs 22 and 26 and ODP Leg 121,” Proc. ODP, Sci. Res. 121, 559–590 (1991).Google Scholar
  43. A. Segev, “Flood basalts, continental breakup and the dispersal of Gondwana: evidence for periodic migration of upwelling mantle flows (plumes),” EGU Stephan Mueller Sp. Publ. Ser. V. 2, 171–191 (2002).CrossRefGoogle Scholar
  44. C. Small, “Observations of ridge–hotspot interactions in the Southern Ocean,” J. Geophys. Res. 100 (B9), 17931–17946 (1995).CrossRefGoogle Scholar
  45. A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, N. T. Arndt, Chung Sun-Lin, L. V. Danyushevsky, T. Elliott, F. A. Frey, M. O. Garcia, A. A. Gurenko, V. S. Kamenetsky, A. C. Kerr, N. A. Krivolutskaya, V. V. Matvienkov, et al., “The amount of recycled crust in sources of mantle-derived melts,” Science 316 (5823), 412–417 (2007).CrossRefGoogle Scholar
  46. M. Storey, A. D. Saunders, J. Tarney, and I. L. Gibson, “Contamination of Indian Ocean asthenosphere by the Kerguelen-Heard mantle plume,” Nature 338, 574–576 (1989).CrossRefGoogle Scholar
  47. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Sp. Publ. 42, 313–345 (1989).Google Scholar
  48. N. Sushchevskaya and B. Belyatsky, “Geochemical and petrological characteristics of Mesozoic dykes from Schirmacher Oasis (East Antarctica),” in Dyke Swarms: Keys for Geodynamic Interpretation, Ed. by R. K. Srivastava (Springer-Verlag, Berlin—Heidelberg, 2011a), pp. 3–18. doi: 10.1007/978-3-642-12496-9_110.1007/978-3-642-12496-9_1CrossRefGoogle Scholar
  49. N. M. Sushchevskaya, B. V. Belyatsky, and A. V. Laiba, “Origin, distribution and evolution of plume magmatism in East Antarctica,” in Volcanology, Ed. by Fr. Stoppa (INTECH, Rijeka, 2011), pp. 3–29.Google Scholar
  50. N. M. Sushchevskaya, B. V. Belyatsky, G. L. Leichenkov, and A. A. Laiba, “Evolution of the Karoo–Maud mantle plume in Antarctica and its influence on the magmatism of the early stages of Indian Ocean opening,” Geochem. Int. 47 (1), 1–17 (2009).CrossRefGoogle Scholar
  51. N. M. Sushchevskaya, B. V. Belyatsky, T. I. Tsekhonya, E. G. Mirlin, V. V. Nikulin, T. V. Romashova, and E. M. Sedykh, “Petrology and geochemistry of basalts from the eastern Indian Ocean: implications for its early evolution,” Petrology 6 (5), 480–505 (1998).Google Scholar
  52. N. M. Sushchevskaya, L. V. Dmitriev, and A. N. Sobolev, “Petrochemical Criterion for classification of quenched glasses of oceanic tholeiites,” Dokl. Akad. Nauk SSSR 268 (6), 953–961 (1983).Google Scholar
  53. N. M. Sushchevskaya, V. S. Kamenetsky, B. V. Belyatsky, and A. V. Artamonov, “Geochemical evolution of Indian Ocean basaltic magmatism,” Geochem. Int. 51 (8), 599–622 (2013).CrossRefGoogle Scholar
  54. N. M. Sushchevskaya, N. A. Migdisova, A. V. Antonov, R. Sh. Krymsky, B. V. Belyatsky, D. V. Kuzmin, and Ya. V. Bychkova, “Geochemical features of the Quaternary lamproitic lavas of Gaussberg Volcano, east Antarctica: result of the impact of the Kerguelen Plume,” Geochem Int. 52 (12), 1030–1048 (2014).CrossRefGoogle Scholar
  55. N. M. Sushchevskaya, G. V. Ovchinnikova, A. Yu. Borisova, B. V. Belyatsky, and I. M. Vasil’eva, “Geochemical heterogeneity of the magmatism of Afanasij Nikitin Rise, northeastern Indian Ocean,” Petrology 4 (2), 119–136 (1996a).Google Scholar
  56. N. M. Sushchevskaya, T. I. Tsekhonya, E. P. Dubinin, E. G. Mirlin, and N. N. Kononkova, “Formation of oceanic crust in mid-ocean ridges of the Indian Ocean,” Geochem. Int. 34 (10), 869–880 (1996b).Google Scholar
  57. R. N. Thompson, A. J. V. Riches, P. M. Antoshechkina, D. G. Pearson, G. M. Nowell, C. J. Ottley, A. P. Dickin, V. L. Hard, A.-K. Ngun, and V. Niku-Paavola, “Origin of CFB magmatism: multi-tiered intracrustal picrite–rhyolite magmatic plumbing at Spitzkoppe, Western Namibia, during Early Cretaceous Etendeka magmatism,” J. Petrol. 48 (6), 1119–1154 (2007).CrossRefGoogle Scholar
  58. A. A. Tikku and S. C. Cande, “On the fit of Broken Ridge and Kerguelen Plateau,” Earth Planet. Sci. Lett. 180 (1–2), 117–132 (2000).CrossRefGoogle Scholar
  59. E. V. Verzhbitsky, and Yu. P. Neprochnov, “Deep structure of the Central Indian Ocean inferred from geophysical data,” Geotectonics 39 (3), 213–223 (2005).Google Scholar
  60. E. V. Verzhbitsky, “Geothermal regime and origin of the Ninetyeast and Chagos–Laccadive ridges,” Oceanology 38 (2), 244–252 (1998).Google Scholar
  61. D. Weis and F. A. Frey, “Isotope geochemistry of Ninetyeast Ridge basement basalts: Sr, Nd and Pb evidence for involvement of the Kerguelen hot spot,” Proc. ODP Sci. Res. 121, 591–610 (1991).Google Scholar
  62. D. Weis, F. A. Frey, A. Giret, and A. Cantagrel, “Geochemical characteristics of the Youngest Volcano (Mount Ross) in J.-M. the Kerguelen Archipelago: inferences for magma flux, lithosphere assimilation and composition of the Kerguelen Plume,” J. Petrol. 39 (5), 973–994 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. M. Sushchevskaya
    • 1
  • O. V. Levchenko
    • 2
  • E. P. Dubinin
    • 3
  • B. V. Belyatsky
    • 4
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.Faculty of GeologyMoscow State UniversityMoscowRussia
  4. 4.Karpinskii All-Russia Research Institute of GeologySt. PetersburgRussia

Personalised recommendations