Advertisement

Geochemistry International

, Volume 54, Issue 2, pp 197–204 | Cite as

New approaches to studying heavy metals in soils by X-ray absorption spectroscopy (XANES)) and extractive fractionation

  • T. M. Minkina
  • A. V. Soldatov
  • D. G. Nevidomskaya
  • G. V. Motuzova
  • Yu. S. Podkovyrina
  • S. S. Mandzhieva
Article

Abstract

A comprehensive approach to studying the nature of interaction between heavy-metal ions and the organic–mineral matrix of soils involves application of modern physical analytical techniques and chemical methods of extractive fractionation. XANES was used to obtain the first data on the near-edge fine structure of X-ray spectra for a number of heavy-metal species in ordinary chernozem. Data on the structure of soil samples saturated with Zn2+ and Cu2+ obtained by XANES (X-ray absorption near-edge structure) make it possible to elucidate the interaction mechanisms of the metals and the types of chemical bonds formed thereby. As contamination doze of with Cu and Zn is increased (from 2000 to 10 000 mg/kg soil), particularly if the metals are introduced in the form of readily solubility salts, bonding between the metals and soil components weakens. Data of extractive fractionation of metal compounds from samples saturated with Cu and Zn compounds testify that the Cu2+ ion is preferably retained in the organic matter of the soil, whereas the Zn2+ ion is bound mostly to silicates, carbonates, and Fe and Mn (hydro)oxides.

Keywords

soil X-ray absorption near-edge structure (XANES) extractive fractionation Cu and Zn compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. C. Adriano, Trace Elements in Terrestrial Environments Springer-Verlag, New York–Berlin–Heidelberg, 2001).CrossRefGoogle Scholar
  2. V. V. Akimtsev, A. V. Boldyreva, and S. N. Golubev, “Content of trace elements in soils of the Rostov district,” in Trace Elements and Natural Radioactivity of Soils, (Rostov. Univ., Rostov-on-Don, 1962), pp. 38–41.Google Scholar
  3. T. E. Alcacio, D. Hesterberg, J. W. Chou, J. D. Martin, S. Beauchemin, and D.E. Sayers, “Molecular scale characteristics of Cu (II) bonding in goethite–humate complexes,” Geochim. Cosmochim. Acta 65 (9), 1355–1366 (2001).CrossRefGoogle Scholar
  4. U. Baron, “Gemeinsame Extraction und Chemische Bestimmung des Leicht-Loslichen Anteils der Mikronohrstoffe Bor, Eisen, Kobalt, Kupfer, Mangan, Molibden, Zink im Bodtn,” Landwirtshaftliche Forsuchung, 82 (7), H. 2, 1955.Google Scholar
  5. A. J. Berry and H. S. C. O’Neil, “A XANES determination of the oxidation state of chromium in silicate glasses,” Am. Mineral. 89, 1597–1609 (2004).CrossRefGoogle Scholar
  6. A. Bianconi, “XANES spectroscopy,” in X–ray Absorption: Principles, Applications and Techniques of EXAFS, SEXAFS and XANES,Ed. by R. Prins and D.C. Koningsberger (John Wiley& Sons, New York, 1988).Google Scholar
  7. A. Bianconi, M. Dell’Ariccia, P. J. Durham, and J. B. Pendry, “Multiple-scattering resonances and structural effects in the X-ray absorption near-edge spectra of Fe II and Fe III hexacyanide complexes,” Phys. Rev. 26, 6502–6508 (1982).CrossRefGoogle Scholar
  8. J. Chan, M. E. Merrifield, A. V. Soldatov, and M. J. Stillman, “XAFS spectral analysis of the cadmium coordination geometry in cadmium thiolate clusters in metallothionein,” Inorg.Chem. 44, 4923–4933 (2005).CrossRefGoogle Scholar
  9. E. J. Elzinga, A. A. Rouff, and R. J. Reeder, “The longterm fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface: an X-ray absorption spectroscopy study,” Geochim. Cosmochim. Acta 70, 2715–2725 (2006).CrossRefGoogle Scholar
  10. S. P. Farrel, M. E. Fleet, I. E. Stekhin, A. N. Kravtsova, and A. V. Soldatov, “Evolution of local electronic structure in alabandite and niningerite solid solutions ((Mn,Fe)S, (Mg,Mn)S, (Mg,Fe)S) using sulfur K- and L-edge XANES spectroscopy,” Am. Mineral. 87, 1321–1332 (2002).CrossRefGoogle Scholar
  11. L. J. Furnare, D. G. Strawn, and A. Vailionis, “Polarized XANES and EXAFS spectroscopic investigation into copper (II) complexes on vermiculite,” Geochim. Cosmochim. Acta 69 (22), 5219–5231 (2005).CrossRefGoogle Scholar
  12. Y. Joly, “X-ray absorption near edge structure calculation beyond the muffin-tin approximation,” Phys. Rev. B. 63, 125–120 (2001).CrossRefGoogle Scholar
  13. A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants (CRC, Boca Raton, 1989).Google Scholar
  14. A. V. Kostenko, A. N. Kravtsova, A. V. Soldatov, and M. Feiters, “Determination of the local atomic structure of the active center of bromoperoxidase protein via the analysis of X-ray absorption spectra,” J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 2 (6), 900–903 (2008).CrossRefGoogle Scholar
  15. D. V. Ladonin and M. M. Karpukhin, “Fractional composition of nickel, copper, zinc, and lead compounds in soils polluted by oxides and soluble metal salts,” Eurasian Soil Sci. 44 (8), 874–885 (2011).CrossRefGoogle Scholar
  16. D. V. Ladonin and O. V. Plyaskina, “Fractional composition of copper, zinc, cadmium, and lead compounds in some types of soils during polyelement pollution,” Vestn. Mosk. Univ., Ser. 17. Pochvoved., No. 1, 8–16 (2003).Google Scholar
  17. H. H. Le Rich and A. N. Weir, “A method of studying trace elements on soil fractions,” J. Soil. Sci 14 (12), 71–75 (1963).Google Scholar
  18. Y. J. Lee, E. J. Elzinga, and R. J. Reeder, “Cu (II) adsorption at the calcite–water interface in the presence of natural organic matter: kinetic studies and molecularscale characterization,” Geochim. Cosmochim. Acta 69 (1), 49–61 (2005).CrossRefGoogle Scholar
  19. E. Lombi and J. Susini, “Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives,” Plant Soil 320, 1–35 (2009).CrossRefGoogle Scholar
  20. Yu. Yu. Lur’e, Manual on Analytical Chemistry (Khimiya, Moscow, 1979) [in Russian].Google Scholar
  21. A. Manceau, M. A. Marcus, and N. Tamura, “Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques,” in Applications of Synchrotron Radiating in Low-Temperature Geochemistry and Environmental Science, Rev. Mineral. Geochem. 49, 341–428 (2002).Google Scholar
  22. S. S. Mandzhieva, T. M. Minkina, G. V. Motuzova, S. E. Golovatyi, N. N. Miroshnichenko, N. K. Lukashenko, and A. I. Fateev, “Fractional and group composition of zinc and lead compounds as an indicator of the environmental status of soils,” Eurasian Soil Sci. 47 (5), 511–518 (2014).CrossRefGoogle Scholar
  23. T. M. Minkina, A. V. Soldatov, G. V. Motuzova, Yu. S. Podkovyrina, and D. G. Nevidomskaya, “Speciation of copper and zinc compounds in artificially contaminated chernozem by X-ray absorption spectroscopy and extractive fractionation,” J. Geochem. Explor. 144, 306–311 (2014).CrossRefGoogle Scholar
  24. T. M. Minkina, G. V. Motusova, S. S. Mandzhieva, and O. G. Nazarenko, “Ecological resistance of the soil–plant system to contamination by heavy metals,” J. Geochem. Explor. 123, 33–40 (2012).CrossRefGoogle Scholar
  25. T. M. Minkina, G. V. Motusova, O. G. Nazarenko, and S. S. Mandzhieva, Heavy Metal Compounds in Soil: Transformation upon Soil Pollution and Ecological Significance (Nova Science Publishers, 2010).Google Scholar
  26. T. M. Minkina, G. V. Motuzova, S. S. Mandzhieva, O. G. Nazarenko, M. V. Burachevskaya, and E. M. Antonenko, “Fractional and group composition of the Mn, Cr, Ni, and Cd compounds in the soils of technogenic landscapes in the impact zone of the Novocherkassk Power Station,” Eurasian Soil Sci. 46 (4), 375–385 (2013a).CrossRefGoogle Scholar
  27. T. M. Minkina, G. V. Motuzova, O. G. Nazarenko, V. S. Kryshchenko, and S. S. Mandzhieva, “Forms of heavy metal compounds in soils of the steppe zone,” Eurasian Soil Sci. 41 (7), 708–716 (2008).CrossRefGoogle Scholar
  28. T. M. Minkina, G. V. Motuzova, O. G. Nazarenko, V. S. Kryshchenko, and S. S. Mandzhieva, “Combined approach for fractioning metal compounds in soils,” Eurasian Soil Sci. 41 (11), 1171–1179 (2008).CrossRefGoogle Scholar
  29. T. M. Minkina, O. G. Nazarenko, G. V. Motuzova, S. S. Mandzhieva, and M. V. Burachevskaya, “Group composition of heavy metal compounds in soils of agrocenoses polluted with aerosol ejecta from the Novocherkassk water-power plant,” Agrokhimiya, No. 6, 68–77 (2011).Google Scholar
  30. T. M. Minkina, A. V. Soldatov, G. V. Motuzova, Yu. S. Podkovyrina, and D. G. Nevidomskaya, “Molecular–structural analysis of the Cu (II) ion in ordinary chernozem: evidence from XANES spectroscopy and methods of molecular dynamics,” Dokl. Earh Sci. 449 (2), 418–421 (2013b).CrossRefGoogle Scholar
  31. G. V. Motuzova and O. S. Bezuglova, Ecological Monitoring of Soils, (Akadem. Prospekt, Gaudeamys, 2007) [in Russian].Google Scholar
  32. G. V. Motuzova, R. S. Antikaev, and E. A. Karpova, “Fractionation of soil arsenic compounds,” Eurasian Soil Sci. 39 (4), 387–396 (2006).CrossRefGoogle Scholar
  33. L. Palladino, S. Della Longa, A. Reale, M. Belli, A. Scafati, G. Onori, and A. Santucci, “X-ray absorption near edge structure (XANES) of Cu(II)-ATP and related compounds in solution: quantitative determination of the distortion of the Cu site,” J. Chem. Phys. 98, 2720–2726 (1993).CrossRefGoogle Scholar
  34. M. S. Panin and N. V. Kalent’eva, “Zn speciation in soils of the Semipalatinsk Irtysh region during polyelement and zinc types of pollution,” Sibirsk. Ekol. Zh., No.1, 9–16 (2009)Google Scholar
  35. D. L. Pinskii and T. M. Minkina, “Regularities of Cu, Pb and Zn adsorption by chernozems of the South of Russia,” Eurasian J. Soil Sci., 2, 59–68 (2013).Google Scholar
  36. D. L. Pinskii, T. M. Minkina, S. S. Mandzhieva, U. A. Fedorov, D. G. Nevidomskaya, and T. V. Bauer, “Adsorption features of Cu(II), Pb(II), and Zn(II) by an ordinary chernozem from nitrate, chloride, acetate, and sulfate solutions,” Eurasian Soil Sci. 47 (1), 400–417 (2014).CrossRefGoogle Scholar
  37. D. L. Pinskii, T. M. Minkina, and Yu. I. Gaponova, “Comparative analysis of mono- and polyelement adsorption of copper, lead, and zinc by an ordinary chernozem from nitrate and acetate solutions,” Eurasian Soil Sci. 43 (7), 748–756 (2010).CrossRefGoogle Scholar
  38. I. O. Plekhanova and V. A. Bambusheva, “Extraction methods for studying the fractional composition of heavy metals in soils and their comparative assessment,” Eurasian Soil Sci. 43 (9), 1004–1010 (2010).CrossRefGoogle Scholar
  39. J. Santillan-Medrano and J. J. Jurinak, “The chemistry of lead and cadmium in soil solid phase formation,” Proceed. Soil Sci. Soc. Am. 39 (5), 851–856 (1975).CrossRefGoogle Scholar
  40. G. Y. Smolentsev and A. V. Soldatov, “Analysis of timeresolved XANES spectra for determining the organometallic compound structure in solution,” J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3 (3), 398–401 (2009).CrossRefGoogle Scholar
  41. G. Y. Smolentsev and A. V. Soldatov, “Quantitative local structure refinement from XANES: multy-dimensional interpolation approach,” J. Synchrotron Radiation 13 (1), 19–29 (2006).CrossRefGoogle Scholar
  42. A. V. Soldatov, “X-ray absorption near edge structure as a source of structural information,” J. Struct. Chem. 49 (Suppl.), 102–106 (2008).CrossRefGoogle Scholar
  43. S. R. Sutton and M. L. Rivers, “Hard X-ray synchrotron microprobe techniques and applications,” in Synchrotron X-ray Methods in Clay Science, Ed. By D. Schulse, P. Bertch, and J. Stucki, (Clay Min. Soc. Amer., 1999), pp. 289–318.Google Scholar
  44. Synchrotron-Based Techniques in Soils and Sediments, Ed. by Balwant Singh and Markus Gräfe (Elsevier B.V., 2010).Google Scholar
  45. B. K. Teo, EXAFS: Basic Principles and Data Analysis. Inorganic Chemistry Concepts 9 (Springer-Verlag, Berlin, 1986).CrossRefGoogle Scholar
  46. A. Tessier, P. G. C. Campbell, and M. Bisson, “Sequential extraction procedure for the speciation of particulate trace metals,” Analyt. Chem. 51, 844–851 (1979).CrossRefGoogle Scholar
  47. Yu. N. Vodyanitskii, “Study of Zn and Pb phase carriers by chemical fractionation and synchrotron X-ray analysis,” Agrokhimiya, No. 8, 77–86 (2010).Google Scholar
  48. K. Xia, W. Bleam, and P. Helmke, “Studies of nature of binding sites of first row transition elements bound to aquatic and soil humic substances using X-ray absorption spectroscopy,” Geochim. Cosmochim. Acta 61 (11), 2223–2235 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. M. Minkina
    • 1
  • A. V. Soldatov
    • 1
  • D. G. Nevidomskaya
    • 1
  • G. V. Motuzova
    • 2
  • Yu. S. Podkovyrina
    • 1
  • S. S. Mandzhieva
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Faculty of Soil ScienceMoscow State University, Leninskie goryMoscowRussia

Personalised recommendations