Thermodynamic properties of platinum chloride complexes in aqueous solutions: Derivation of consistent parameters from literature data and experiments on Pt(cr) solubility at 400–475°C and 1 kbar

Abstract

The solubility of Pt(cr) in acidic chloride solutions was measured at 400–475°C and P = 0.8–1.0 kbar using an autoclave technique and the analysis of the dissolved component after quenching. The PtCl 3 complex was identified as the main Pt species at experimental parameters, m(NaCl) = 0.1–3.0 mol/kg H2O and m(HCl) ∼0.01. The thermodynamic parameters of the Helgeson-Kirkham-Flowers (HKF) model were determined for Pt2+ and Pt-Cl complexes (PtCl 2−n n n = 1–4) by analysis of literature data and their adjustment with obtained results. The solubility of Pt under supercritical P-T parameters calculated using these parameters is similar to Pd solubility. The thermodynamic properties and HKF model parameters for aqueous species determined in this study were incorporated into the on-line version of the FreeGC database (http://www-b.ga.gov.au/minerals/research/methodology/geofluids/freegs_about.jsp), which allows calculation of the Gibbs free energy of system components and equilibrium constants of reactions with these species.

This is a preview of subscription content, log in to check access.

References

  1. R. G. Berman, “Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2,” J. Petrol. 29, 445–522 (1988).

    Article  Google Scholar 

  2. T. P. Dadze, and G. A. Kashirtseva, “Solubility of platinum and palladium in chloride hydrothermal solutions: experimental data,” in Proceedings of the Annual Session of the Moscow Division of the Russian Mineralogical Society, in Honor of 110th Anniversary of the Academician A.G. Betekhtin “Role of Mineralogy in the Understanding of Ore Formation,” Moscow, Russia, 2007 (Inst. Geol. Rudn. Mestorozhd., Moscow, 2007), pp. 136–139 [in Russian].

    Google Scholar 

  3. L. Drougge, L. I. Elding, and L. Gustafson, “Stepwise dissociation of the tetrachlorplatinate (II) ion in aqueous solution. III. Influence of temperature on kinetics and equilibrium of the first step,” Acta Chem. Scand. 21, 1647–1653 (1967).

    Article  Google Scholar 

  4. L. I. Elding “The stepwise dissociation of the tetrachloridoplatinate (II) ion in aqueous solution. II. Kinetics of the first step,” Acta Chem. Scand. 20, 2559–2567 (1966).

    Article  Google Scholar 

  5. L. I. Elding, “The stepwise dissociation of the tetrachloridoplatinate (II) ion in aqueous solution. IV. The chlorotriaquaplatinum (II) ion,” Acta Chem. Scand. 24, 1331–1340 (1970).

    Article  Google Scholar 

  6. L. I. Elding, “Stabilities of platinum (II) chloro and bromo complexes and kinetics for anation of the tetraaquaplatinum (II) ion by halides and thiocyanate,” Inorg. Chim. Acta 28, 255–262 (1978)

    Article  Google Scholar 

  7. L. I. Elding and I. Leden, “On the stepwise dissociation of the tetrachloridoplatinate (II) ion in aqueous solution,” Acta Chem. Scand. 20, 706–715 (1966).

    Article  Google Scholar 

  8. C. H. Gammons, M. S. Bloom, and Y. Yu, “Experimental investigation of the hydrothermal geochemistry of platinum and palladium: I. Solubility of platinum and palladium sulfide minerals in NaCl/H2SO4 solutions at 300°C,” Geochim. Cosmochim. Acta 56, 3881–3894 (1992).

    Article  Google Scholar 

  9. O. Ginstrup, “The redox system Platinum (0)/Platinum (II)/Platinum (IV) with chloro and bromo ligands,” Acta Chem. Scand. 26, 1527–1541 (1972).

    Article  Google Scholar 

  10. O. Ginstrup and I. Leden, “Emf measurements on the system platinum (IV)/platinum (II) in a chloride ion medium at 60°C,” Acta Chem. Scand. 22, 1163–1170 (1968).

    Article  Google Scholar 

  11. L. F. Grantham, T. S. Elleman, and D. S. Martin, Jr., “Exchange of chlorine in aqueous systems containing chloride and tetrachlorplatinate (II),” J. Am. Chem. Soc. 77, 2965–2971 (1955).

    Article  Google Scholar 

  12. A. A. Grinberg, and M. I. Gel’fman, “Stability of the complex compounds of bivalent platinum,” Dokl. Akad. Nauk SSSR 133, 1081–1083 (1960).

    Google Scholar 

  13. A. L. Grinberg and G. A. Shagisultanova, “Problem of the stability of complex compounds of bivalent platinum,” Zh. Neorg. Khim. 5(2), 280–282 (1960).

    Google Scholar 

  14. J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to 1000°C,” Comp. Geosci. 18, 899–947 (1992) (http://geopig.asu.edu/supcrt92_data/slop98.dat).

    Article  Google Scholar 

  15. F. Kawaizumi, “Partial molar volumes of halogeno complexes of platinum and palladium in aqueous solutions and differences in volume between tetra- and hexa-coordinated forms,” J. Chem. Soc. Faraday Trans. 88(16), 2351–2353 (1992).

    Article  Google Scholar 

  16. L. A. Koroleva, N. D. Shikina, P. G. Kolodina, A. V. Zotov, B. R. Tagirov, Yu. V. Shvarov, V. A. Volchenkova, and Yu. K. Shazzo, “Experimental study of Pd hydrolysis in aqueous solutions at 25–70°C,” Geochem. Int. 50(10), 853–859 (2012).

    Article  Google Scholar 

  17. N. M. Nikolaeva, Chemical Equilibria in Aqueous Solutions at Elevated Temperatures (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  18. N. M. Nikolaeva, and N. M. Erenburg, “Influence of temperature on standard potential of the PtII halogenide complexes,” Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 4 70–73 (1977).

    Google Scholar 

  19. Platinum of Russia, Ed. by D.A. Dodin and N.M. Chernyshev (Geoinformmark, Moscow, 2005) [in Russian].

    Google Scholar 

  20. L. P. Plyusnina, G. G. Likhoidov, and Zh. A. Shcheka, “Experimental modeling of platinum behavior under hydrothermal conditions (300–500°C) and 1 kbar,” Geochem. Int. 45(11), 1124–1130 (2007).

    Article  Google Scholar 

  21. N. A. Polotnyanko, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IONKh RAN, Moscow, 2013).

    Google Scholar 

  22. R. A. Robie, and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures,” US Geol. Surv. Bull., No. 2131 (1995)

    Google Scholar 

  23. C. I. Sanders and D. S. Martin, Jr., “Acid hydrolysis of [PtCl4]= and [PtCl3(H2O)],” J. Am. Chem. Soc. 83, 807–810 (1961).

    Article  Google Scholar 

  24. E. L. Shock and H. C. Helgeson, “Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C,” Geochim. Cosmochim. Acta 52, 2009–2036 (1988).

    Article  Google Scholar 

  25. E. L. Shock, H. C. Helgeson, and D. A. Sverjensky, “Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species,” Geochim. Cosmochim. Acta 53, 2157–2183 (1989).

    Article  Google Scholar 

  26. Yu. V. Shvarov, “HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by Windows,” Geochem. Int. 46(8), 834–839 (2008).

    Article  Google Scholar 

  27. Yu. V. Shvarov, “OptimA: A program for the calculation of the free energies of dissolved aqueous species from the results of chemical experiments” (2010a) (http://www.geol.msu.ru/deps/geochems/soft/).

    Google Scholar 

  28. Yu. Yu. V. Shvarov, “OptimB: A program for the calculation of the thermodynamic properties and HKF parameters of aqueous species” (2010b) (http://www.geol.msu.ru/deps/geochems/soft/).

    Google Scholar 

  29. T. A. Stolyarova and E. G. Osadchii, “Enthalpy of formation of platinum and palladium monotellurides from the elements,” Geochem. Int. 51(10) 852–854 (2013).

    Article  Google Scholar 

  30. D. A. Sverjensky, J. J. Hemley, W. M. D’Angelo, “Thermodynamic assessment of hydrothermal alkali feldsparmica-aluminosilicate equilibria,” Geochim. Cosmochim. Acta 55, 989–1004 (1991).

    Article  Google Scholar 

  31. D. A. Sverjensky, E. L. Shock, and H. C. Helgeson, “Prediction of thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb,” Geochim. Cosmochim. Acta 61, 1359–1412 (1997).

    Article  Google Scholar 

  32. B. R. Tagirov, and N. N. Baranova, “The state of palladium in sulfide hydrothermal solutions: experimental solubility study,” Geochem. Int. 47(9), 1234–1242 (2009).

    Article  Google Scholar 

  33. B. R. Tagirov, A. V. Zotov, and N. N. Akinfiev, “Experimental study of dissociation of HCl from 350 to 500°C and from 500 to 2500 bars: Thermodynamic properties of HCl(aq),” Geochim. Cosmochim. Acta 61, 4267–4280 (1997).

    Article  Google Scholar 

  34. B. R. Tagirov, N. N. Baranova, A. V. Zotov, N. N. Akinfiev, N. A. Polotnyanko, N. D. Shikina, L. A. Koroleva, Yu. V. Shvarov, and E. N. Bastrakov, “The speciation and transport of palladium in hydrothermal fluids: experimental modeling and thermodynamic constraints,” Geochim. Cosmochim. Acta 117, 348–373 (2013).

    Article  Google Scholar 

  35. J. C. Tanger IV and H. C. Helgeson, “Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for standard partial molal properties of ions and electrolytes,” Am. J. Sci. 288, 19–98 (1988).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. R. Tagirov.

Additional information

Original Russian Text © B.R. Tagirov, N.N. Baranova, Ya.V. Bychkova, 2015, published in Geokhimiya, 2015, No. 4, pp. 344–356.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tagirov, B.R., Baranova, N.N. & Bychkova, Y.V. Thermodynamic properties of platinum chloride complexes in aqueous solutions: Derivation of consistent parameters from literature data and experiments on Pt(cr) solubility at 400–475°C and 1 kbar. Geochem. Int. 53, 327–340 (2015). https://doi.org/10.1134/S0016702915040084

Download citation

Keywords

  • platinum
  • chloride complexes
  • hydrothermal solutions
  • thermodynamic properties