Advertisement

Geochemistry International

, Volume 52, Issue 9, pp 767–772 | Cite as

Stability conditions of polycyclic aromatic hydrocarbons at high pressures and temperatures

  • A. D. Chanyshev
  • K. D. Litasov
  • A. F. Shatskiy
  • J. Furukawa
  • E. Ohtani
Article

Abstract

The first results of study of stability of diverse polycyclic aromatic hydrocarbons at around 7 GPa and 773–1073 K are reported. Experiments were carried out in hydraulic multi-anvil presses. The run products after quenching were analyzed using a method of matrix-assisted laser desorption-ionization (MALDI). The formation of polymers of starting matters was determined at 7 GPa and 773–883 K. The polymers are characterized by atomic masses up to 5000 Da, that are multiple by masses of starting matters. At higher temperatures (873–1073 K), the selected PAHs and their polymers become unstable. The decomposition temperature of PAHs and their polymers exclude their stability under Earth’s mantle conditions. The studies could be of great significance for the low-temperature near-surface geodynamics of small and large planetary bodies, which supposedly contain hydrocarbon compounds.

Key words

polycyclic aromatic hydrocarbons high pressures matrix-assisted laser desorption-ionization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Kadik, A.A. and Lukanin, O.A., Devolatilization of the Upper Mantle during Its Melting (Nauka, Moscow, 1986) [in Russian].Google Scholar
  2. 2.
    S. F. Foley, “A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time,” J. Petrol. 52, 1363–1391 (2011).CrossRefGoogle Scholar
  3. 3.
    D. J. Frost and C. A. McCammon, “The redox state of Earth’s mantle,” Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).CrossRefGoogle Scholar
  4. 4.
    K. D. Litasov, “Physicochemical conditions for melting in the Earth’s mantle containing a C-O-H fluid (from experimental data),” Russ. Geol. Geophys. 52, 475–492 (2011).CrossRefGoogle Scholar
  5. 5.
    A. A. Kadik, “Mantle-derived reduced fluids: relationship to the chemical differentiation of planetary matter,” Geochem. Int. 41, 844–855 (2003).Google Scholar
  6. 6.
    A. A. Kadik, “Oxygen fugacity regime in the upper mantle as a reflection of the chemical differentiation of planetary materials,” Geochem. Int. 44, 56–71 (2006).CrossRefGoogle Scholar
  7. 7.
    V. I. Kovalenko, V. B. Naumov, V. V. Yarmolyuk, and V. A. Dorofeeva, “Volatile components (H2O, CO2, Cl, F, and S) in basic magmas of various geodynamic settings: data on melt inclusions and quenched glasses,” Petrology 8, 113–144 (2000).Google Scholar
  8. 8.
    L. N. Pokhilenko, I. I. Fedorov, N. P. Pokhilenko, and A. A. Tomilenko, “Fluid regime of the formation of mantle rocks: chromatographic data and thermodynamic calculations,” Geol. Geofiz. 35, 67–70 (1994).Google Scholar
  9. 9.
    V. S. Zubkov, “The problem of the influence of hydrocarbon-inorganic fluid on the deep geodynamic and lithospheric processes,” in Geochemical Processes and Mineral Resources (GeoIGU, 2000), pp. 10–28 [in Russian].Google Scholar
  10. 10.
    V. S. Zubkov, “Composition and speciation of fluid in the system C-H-N-O-S at P-T conditions of the upper mantle,” Geochem. Int. 39, 109–122 (2001).Google Scholar
  11. 11.
    H. P. Scott, R. J. Hemley, H.-K. Mao, D. R. Herschbach, L. E. Fried, W. M. Howard, and S. Bastea, “Generation of methane in the Earth’s mantle: in situ high pressure-temperature measurements of carbonate reduction,” Proc. Nat. Acad. Sci. U. S. A. 101, 14023–14026 (2004).CrossRefGoogle Scholar
  12. 12.
    E. B. Chekalyuk, Oil of the Earth’s Upper Mantle (Naukova dumka, Kiev, 1967) [in Russian].Google Scholar
  13. 13.
    L. J. Allamandola, S. A. Sandford, and B. Wopenka, “Interstellar polycyclic aromatic hydrocarbons and carbon in interplanetary dust particles and meteorites,” Science 237, 56–59 (1987).CrossRefGoogle Scholar
  14. 14.
    P. Ehrenfreund and J. Cami, “Cosmic carbon chemistry: from the interstellar medium to the early Earth,” Cold Spring Harbor Perspect. Biol. 2 (2010). doi: 10.1101/cshperspect.a002097.Google Scholar
  15. 15.
    P. Ehrenfreund and S. B. Charnley, “Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early Earth,” Annu. Rev. Astron. Astrophys. 38, 427–483 (2000).CrossRefGoogle Scholar
  16. 16.
    B. P. Basile, B. S. Middleditch, and J. Oro, “Polycyclic aromatic hydrocarbons in the Murchison Meteorite,” Org. Geochem. 5, 211–216 (1984).CrossRefGoogle Scholar
  17. 17.
    J. Oro, J. Gibert, H. Lichtenstein, S. Wikstrom, and D. Flory, “Amino-acids, aliphatic and aromatic hydrocarbons in the Murchison Meteorite,” Nature 230, 105–106 (1971).CrossRefGoogle Scholar
  18. 18.
    V. K. Garanin, A. Ya. Biller, V. L. Skvortsova, A. V. Bovkun, and G. V. Bondarenko, “Polyphase hydrocarbon inclusions in garnet from the Mir diamondiferous pipe,” Mosc. Univ. Geol. Bull. 66(2), 116–125 (2011).CrossRefGoogle Scholar
  19. 19.
    I. I. Kulakova, A. I. Ogloblina, A. P. Rudenko, V. N. Florovskaya, A. I. Botkunov, and V. L. Skvortsova, “Polycyclic aromatic hydrocarbons in the diamond-associated minerals and possible mechanism of their formation,” Dokl. Akad. Nauk SSSR 267, 1458–1461 (1982).Google Scholar
  20. 20.
    M. D. Bratus’, I. M. Svoren’, N. N. Zinchuk, and K. P. Argunov, “Gas components of inclusions in diamonds of different morphological types from Yakutia,” Geokhimiya 29, 1586–1595 (1991).Google Scholar
  21. 21.
    F. V. Kaminsky, I. I. Kulakova, and A. I. Ogloblina, “Polycyclic aromatic hydrocarbons in carbonado and diamond,” Dokl. Akad. Nauk SSSR 283, 985–988 (1985).Google Scholar
  22. 22.
    J. Akella and G. C. Kennedy, “Melting of three organic compounds at high pressures,” J. Chem. Phys. 52, 970–974 (1970).CrossRefGoogle Scholar
  23. 23.
    S. N. Vaidya and G. C. Kennedy, “Compressibility of 18 molecular organic solids to 45 kbar,” J. Chem. Phys. 55, 987–992 (1971).CrossRefGoogle Scholar
  24. 24.
    V. Davydov, A. Rakhmanina, V. Agafonov, B. Narymbetov, J.-P. Boudou, and H. Szwarc, “Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures,” Carbon 42, 261–269 (2004).CrossRefGoogle Scholar
  25. 25.
    A. D. Chanyshev, K. D. Litasov, A. F. Shatskiy, and E. Ohtani, “Study of polycyclic aromatic hydrocarbons at pressures of 6–9 GPa using X-ray diffractometry and synchrotron radiation,” Dokl. Earth Sci. 2014. (in press).Google Scholar
  26. 26.
    K. Mimura and S. Toyama, “Behavior of polycyclic aromatic hydrocarbons at impact shock: its implication for survival of organic materials delivered to the early Earth,” Geochim. Cosmochim. Acta 69, 201–209 (2005).CrossRefGoogle Scholar
  27. 27.
    K. Bose and J. Ganguly, “Quartz-coesite transition revisited-reversed experimental determination at 500–1200°C and retrieved thermochemical properties,” Am. Mineral. 80, 231–238 (1995).Google Scholar
  28. 28.
    J. Susaki, M. Akaogi, S. Akimoto, and O. Shimomura, “Garnet-perovskite transformation in CaGeO3: in situ X-Ray measurements using synchrotron radiation,” Geophys. Res. Lett. 12, 729–732 (1985).CrossRefGoogle Scholar
  29. 29.
    T. Yagi, M. Akaogi, O. Shimomura, T. Suzuki, and S. Akimoto, “In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation,” J. Geophys. Res. 92, 6207–6213 (1987).CrossRefGoogle Scholar
  30. 30.
    K. D. Litasov, A. Shatskiy, E. Ohtani, and G. M. Yaxley, “Solidus of alkaline carbonatite in the deep mantle,” Geology 41, 79–82 (2013).CrossRefGoogle Scholar
  31. 31.
    A. Shatskiy, I. S. Sharygin, P. N. Gavryushkin, K. D. Litasov, Y. M. Borzdov, A. V. Shcherbakova, Y. Higo, K. Funakoshi, Y. N. Palyanov, and E. Ohtani, “The system K2CO3-MgCO3 at 6 GPa and 900–1450°C,” Am. Mineral. 98, 1593–1603 (2013).CrossRefGoogle Scholar
  32. 32.
    A. Shatskiy, T. Katsura, K. Litasov, A. Shcherbakova, Y. Borzdov, D. Yamazaki, A. Yoneda, E. Ohtani, and E. Ito, “High pressure generation using scaled-up Kawai-Cell,” Phys. Earth Planet. Inter. 189, 92–108 (2011).CrossRefGoogle Scholar
  33. 33.
    M. Karas, D. Bachmann, U. Bahr, and F. Hillenkamp, “Matrix-assisted ultraviolet laser desorption of nonvolatile compounds,” Int. J. Mass Spectrom. Ion Processes 78, 53–68 (1987).CrossRefGoogle Scholar
  34. 34.
    A. G. G. M. Tielens, “Interstellar polycyclic aromatic hydrocarbon molecules,” Annu. Rev. Astron. Astrophys. 46, 289–337 (2008).CrossRefGoogle Scholar
  35. 35.
    W. Hubbard, “Interiors of the giant planets,” Science 214, 145–149 (1981).CrossRefGoogle Scholar
  36. 36.
    W. Hubbard, W. Nellis, A. Mitchell, N. Holmes, S. Limaye, and P. McCandless, “Interior structure of Neptune: comparison with Uranus,” Science 253, 648–651 (1991).CrossRefGoogle Scholar
  37. 37.
    L. Ciabini, F. A. Gorelli, M. Santoro, R. Bini, V. Schettino, and M. Mezouar, “High-pressure and high-temperature equation of state and phase diagram of solid benzene,” Phys. Rev. 72, 094108 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. D. Chanyshev
    • 1
    • 2
  • K. D. Litasov
    • 1
    • 2
  • A. F. Shatskiy
    • 1
    • 2
  • J. Furukawa
    • 3
  • E. Ohtani
    • 3
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.V.S. Sobolev Institute of Geology and MineralogySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.Tohoku UniversitySendaiJapan

Personalised recommendations