Advertisement

Geochemistry International

, Volume 52, Issue 6, pp 500–514 | Cite as

Iodine and selenium speciation in natural waters and their concentrating at landscape-geochemical barriers

  • E. M. Korobova
  • B. N. Ryzhenko
  • E. V. Cherkasova
  • E. M. Sedykh
  • N. V. Korsakova
  • V. N. Danilova
  • S. D. Khushvakhtova
  • V. Yu. Berezkin
Article

Abstract

Drinkable waters in Bryansk oblast are generally poor in I and Se. Possible I and Se speciation in the drinkable waters and their means of migration and concentration in soils at geochemically contrasting conditions are analyzed, and the possible reason for the high mobility of I is demonstrated to be predetermined not only by its occurrence in the form of iodide and organic complexes but also by solute mineral species (CaI+ and MgI+), with the former and the latter types of the complexes spread more widely in the polessky and opolny landscape types, respectively. Iodine complexation with alkali-earth cations under reduced neutral-weakly alkaline conditions facilitates, on the one hand, vertical iodine migration and, on the other hand, its precipitation on the carbonate barrier. The predominant solute species of Se in these environments is hydroselenide, which can form FeSe in the presence of significant Fe concentrations and be precipitated on the reduced barrier in soils of hydromorphic landscapes. The generally low total I and Se concentrations in the drinkable waters and the migration of solute compounds of radioactive I in the form of organic and inorganic complexes could likely result in a higher thyroid morbidity rate over the whole territory of Bryansk oblast, including areas contaminated with radioactive I isotopes after the accident at the Chernobyl nuclear power plant.

Keywords

iodine selenium geochemical landscapes geochemical barriers mineral equilibria biogeochemistry Chernobyl Bryansk oblast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Plant, D. G. Kinniburgh, P. L. Smedly, F. M. Fordyce, and B. A. Klinck, “Arsenic and selenium,” in The Crust, Ed. by H.D. Holland and K.K. Turekian, Treatise Geochem. 9, 17–66 (2005).Google Scholar
  2. 2.
    A. I. Perel’man and N. S. Kasimov, Geochemistry of Landscapes (Astreya, Moscow, 1999) [in Russian].Google Scholar
  3. 3.
    S. R. Krainov, B. N. Ryzhenko, and V. M. Shvets, Geochemistry of Groundwaters. Theoretical, Applied, and Ecological Aspects (Nauka, Moscow, 2004) [in Russian].Google Scholar
  4. 4.
    Lehto Jukka, Tero Räty, Xiaolin Hou, Jussi Paatero, Ala Aldahan, Göran Possnert, Juha Flinkman, and Harri Kankaanpää, “Speciation of 129I in sea, lake and rain waters,” Sci. Total Environ. 419, 60–67 (2012).CrossRefGoogle Scholar
  5. 5.
    Hansen Violeta, Per Roos, Ala Aldahan, Xiaolin Hou, and Göran Possner, “Partition of iodine (129I and 127I) isotopes in soils and marine sediments,” J. Environ. Radioact. 102, 1096–1104 (2011).CrossRefGoogle Scholar
  6. 6.
    S. Kodama, Y. Takahashi, K. Okumura, and T. Uruga, “Speciation of iodine in solid environmental samples by iodine K-Edge XANES: application to soils and ferromanganese oxides,” Sci. Total Environ. 363, 275–284 (2006).CrossRefGoogle Scholar
  7. 7.
    K. P. Makhonko, E. G. Kozlova, A. N. Silantev, L. P. Bochkov, I. G. Shkuratova, N. K. Valetova, A. A. Volokitin, and F. A. Rabotnova, “Local contamination with 131I after the Chernobyl Nuclear Power Plant accident and estimates of the dose burdens from its radiation,” At. Energy, No. 4, 339–344 (1992).Google Scholar
  8. 8.
    V. V. Shakhtarin, A. F. Tsyb, V. F. Stepanenko, M. Y. Orlov, A. J. Kopecky, and S. Davis, “Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl Power Station accident,” Int. J. Epidemiol. 32, 584–591 (2003).CrossRefGoogle Scholar
  9. 9.
    R. M. Garrels and Ch. L. Christ, Solutions, Minerals, and Equilibria, (Harper and Row, New York, 1965).Google Scholar
  10. 10.
    E. V. Prosyannikov, Tendencies in the Evolution of Natural and Anthropogenically Transformed Ecosystems of the Bryansk Region Damaged by the global Chernobyl Nuclear Power Station Accident (Bryansk, 2002) [in Russian].Google Scholar
  11. 11.
    E. M. Korobova, V. N. Danilova, N. V. Korsakova, S. D. Khushvakhtova, V. Yu. Berezkin, and L. V. Krigman, “First results of study of geochemical contrast in iodine and selenium distribution in landscapes by the example of the Bryansk region,” Vestn. Otd. Nauk Zemle Ross. Akad. Nauk, No. 3, NZ6044 (2011). Doi:10.2205/2011NZ000174..Google Scholar
  12. 12.
    A. D. Proshin and V. N. Doroshchenko, Iodine Deficit among Inhabitants of the Bryansk Region (OOO “Ladomir”, Bryansk, 2005) [in Russian].Google Scholar
  13. 13.
    Department on Interior Management on Central Federal Okrug. http://centrnedra.ru/?Step=addi-tional&id=6.
  14. 14.
    M. B. Tarlyk, “Groundwaters in the Bryansk region,” http://www.bryanskobl.ru/region/geography/underwater/.
  15. 15.
    G. F. Proskuryakova and O. N. Nikitina, “Accelerated version of rodanide-nitrite method of determination of iodine microamounts in biological objects,” Agrokhimiya, No. 7, 140–143 (1976).Google Scholar
  16. 16.
    V. V. Ermakov, “Fluorimetric determination of selenium in the products of animal husbandry, organs (tissues), and environmental objects,” in Methodical Instructions on Determination of Pesticides in Biological Objects (VASKhNIL, Moscow, 1987), pp. 8–18 [in Russian].Google Scholar
  17. 17.
    Selenium in drinking-water. Background document for development of WHO guidelines for drinking-water quality. World Health Organization (2011). WHO/HSE/WSH/10.01/14.Google Scholar
  18. 18.
    GOST13273-88.Google Scholar
  19. 19.
    O. A. Limantseva and B. N. Ryzhenko, “Model for Sr accumulation in the carboniferous deposits of the Moscow Artesian Basin,” Geochem. Int. 46(9), 935–944 (2008).CrossRefGoogle Scholar
  20. 20.
    V. A. Alekseev, L. N. Kochnova, E. V. Cherkasova, and O. A. Tyutyunnik, “Possible reasons for elevated fluorine concentrations in groundwaters of carbonate rocks,” Geochem. Int. 48(1), 68–82 (2010).CrossRefGoogle Scholar
  21. 21.
    J. D. Allison and T. L. Allison, Partition Coefficients for Metals in Surface Water, Soil, and Waste, EPA/600/R05/074. (Washington, 2005)Google Scholar
  22. 22.
    A. I. Perel’man, Geochemistry (Vysshaya shkola, Moscow, 1989) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. M. Korobova
    • 1
  • B. N. Ryzhenko
    • 1
  • E. V. Cherkasova
    • 1
  • E. M. Sedykh
    • 1
  • N. V. Korsakova
    • 1
  • V. N. Danilova
    • 1
  • S. D. Khushvakhtova
    • 1
  • V. Yu. Berezkin
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI)Russian Academy of SciencesMoscowRussia

Personalised recommendations