Advertisement

Geochemistry International

, Volume 51, Issue 6, pp 431–455 | Cite as

Masses of carbon in the Earth’s hydrosphere

  • E. A. Romankevich
  • A. A. Vetrov
Article

Abstract

Recent data were summarized on the concentration and mass of inorganic and organic carbon in reservoirs of the Earth’s hydrosphere. We compared carbon masses and accumulation conditions in the surface hydrosphere and waters of the sedimentary shell and proportions between carbonate, dissolved, and suspended particulate organic carbon. It was shown that the total masses of carbon in the surface hydrosphere and in the waters of the sedimentary shell are approximately equal to 80 × 1018 g C at an organic to carbonate carbon ratio of 1 : 36 and 1 : 43, respectively. Three main forms of organic compounds in the ocean (living organisms, suspended particles, and dissolved species) occur in the proportion 1 : 13 : 250 and form the pyramid of masses 4 × 1015 g, 50 × 1015 g, and 1000 × 1015 g Corg. The descending sequence of the organic to carbonate carbon ratio in water, ocean (1 : 36) > glaciers (1 : 8) > lakes (1 : 2) > rivers (1 : 0.6) > wetlands (1 : 0.3), is in general consistent with an increase in the same direction in the mean concentrations of organic matter: 0.77 mg Corg/L in the ocean, 0.7 mg Corg/L in glaciers, 6–30 mg Corg/L in lakes, 15 mg Corg/L in rivers, and 75 mg Corg/L in wetlands. Both the mean concentrations and masses of dissolved organic matter in the pore waters of oceanic sediments and in the waters of the sedimentary shell are similar: 36–37 mg/L and 5 × 1018 and 5.6 × 1018 g, respectively. The mass of carbonate carbon in the pore waters of the ocean, (19–33) × 1018 g, is comparable with its mass in the water column, 38.1 × 1018 g.

Keywords

hydrosphere organic and inorganic carbon carbon mass carbon flux ocean rivers lakes impoundments wetlands soil sedimentation water underground glaciers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Klige, “Hydrosphere,” in Great Russian Enncyclopedia, Vol. 7 (2007), pp. 100–10Google Scholar
  2. 2.
    V. N. Mikhailov, A. D. Dobrovol’skii, and S. A. Dobrolyubov, Hydrology (Vysshaya shkola, Moscow, 2007) [in Russian].Google Scholar
  3. 3.
    V. P. Zverev, Water in the Earth (Nauchnyi mir, Moscow, 2009) [in Russian].Google Scholar
  4. 4.
    R. K. Klige, History of Hydrosphere (Nauchnyi mir, Moscow, 1998) [in Russian].Google Scholar
  5. 5.
    V. M. Kotlyakov and D. M. Parkin, “Ice,” in Great Russian Enncyclopedia, Vol. 17 (2010), pp. 151–152.Google Scholar
  6. 6.
    V. P. Zverev, Groundwaters of the Earth’s Crust and Geological Processes (Nauchnyi mir, Moscow, 2006) [in Russian].Google Scholar
  7. 7.
    I. A. Shiklomanov, “World Fresh Water Resources,” in Water in Crisis: A Guide to the World’s Fresh Water Resources, Ed. by P. H. Gleick (Oxford University, 1993), pp. 13–24.Google Scholar
  8. 8.
    I. A. Shiklomanov, World Water Resources at the Beginning of the 21st Century (St. Petersburg, 1999).Google Scholar
  9. 9.
    R. Horne, Marine Chemistry (Wiley, New York, 1969).Google Scholar
  10. 10.
    O. A. Alekin, and Yu. I. Lyakhin, Marine Chemistry (Gidrometeoizdat, Leningrad, 1984).Google Scholar
  11. 11.
    A. M. Nikanorov, Hydrochemistry (St. Petersburg, 2001) [in Russian].Google Scholar
  12. 12.
    Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier-Pergamon, Oxford, 2003).Google Scholar
  13. 13.
    S. R. Emerson and J. Hedges, Chemical Oceanography and the Marine Carbon Cycle (University Press, Cambridge, 2008).CrossRefGoogle Scholar
  14. 14.
    V. V. Gordeev, Geochemistry of the River-Sea System (Matushkin I.I., Moscow, 2012) [in Russian].Google Scholar
  15. 15.
    V. A. Uspenskii, Introduction to Oil Geochemistry (Nedra, Leningrad, 1970) [in Russian].Google Scholar
  16. 16.
    V. M. Shvets, Organic Matter of Groundwaters (Nedra, Moscow, 1973) [in Russian].Google Scholar
  17. 17.
    E. A. Romankevich and A. A. Vetrov, “Fluxes and Masses of Organic Carbon in the Ocean,” Geochem. Int. 35(9), 829–836 (1997).Google Scholar
  18. 18.
    E. T. Degens, S. Kempe, and J. E. Richey, “Summary: Biogeochemistry of Major World Rivers,” in Biogeochemistry of Major World Rivers, Ed. by E. T. Degens. S. Kempe, and J. E. Richey (SCOPE 42, Wiley, Chichester, 1991), pp. 323–347.Google Scholar
  19. 19.
    Yu. N. Gursky, Geochemistry of the Lithosphere of Internal Seas (GEOS, Moscow, 2007), Vol. 2 [in Russian].Google Scholar
  20. 20.
    T. R. Carrick and D. W. Sutcliffe, Concentrations of Major Ions in Lakes and Tarns on the English Lake District (1953–1978) (Freshwater Biological Association, Ambleside, 1982) (FBA Occasional Publications 16). http://aquaticcommons.org/5354/ Google Scholar
  21. 21.
    P. Miretzky, V. Conzonno, and A. F. Cirelli, “Hydrochemistry of Pampasic Ponds in the Lower Stream Bed of Salado River Drainage Basin, Argentina,” Environ. Geol. 39(8), 951–956 (2000).CrossRefGoogle Scholar
  22. 22.
    B. F. Jones and D. M. Deocampo, “Geochemistry of Saline Lakes,” in Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier-Pergamon, Oxford, 2003), Vol. 5, pp. 207–223.Google Scholar
  23. 23.
    A. M. Chernyaev, L. E. Chernyaeva, and M. E. Eremeeva, Swamp Hydrochemistry (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  24. 24.
    M. Meybeck, “Global Occurrence of Major Elements in Rivers,” in Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier-Pergamon, Oxford, 2003), Vol. 5, pp. 207–223.CrossRefGoogle Scholar
  25. 25.
    Y. K. Kharaka and J.S. Hanor, “Deep Fluids in the Continents: I. Sedimentary Basins,” in Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier-Pergamon, Oxford, 2003), Vol. 5, pp. 499–540.Google Scholar
  26. 26.
    L. N. Plummer, D. L. Parkhurst, and D. C. Thorstenson, “Development of Reaction Models for Ground-water Systems,” Geochim. Cosmochim. Acta 4, 665–686 (1983).CrossRefGoogle Scholar
  27. 27.
    G. H. Brown, “Glacier Meltwater Hydrochemistry,” Appl. Geochem. 17, 855–883 (2002).CrossRefGoogle Scholar
  28. 28.
    P. F. Svistov, N. A. Pershina, A. I. Polishchuk, and M. T. Pavlova, “Ionic Composition of Precipitate,” in Review of Environmental State and Pollution in the Russian Federation, Ed. by Yu. A. Izrael’ et al. (Rosgidromet, Moscow, 2010), pp. 47–50 [in Russian].Google Scholar
  29. 29.
    V. A. Kovda and B. G. Rozanov, Pedology. Soil and Its Formation (Vysshaya shkola, Moscow, 1988), Vol. 1 [in Russian].Google Scholar
  30. 30.
    E. A. Romankevich, A. A. Vetrov, and V. I. Peresypkin, “Carbon Cycle in the Modern Ocean and Important Problems of Biogeochemistry,” in Oceanology at the Start of the 21st Century, Ed. by A. L. Vereshchaka (Nauka, Moscow, 2008), pp. 78–107 [in Russian].Google Scholar
  31. 31.
    A. C. Redfield, B. H. Ketchum, and F. A. Richards, “The Influence of Organisms on the Composition of Sea Water,” in The Sea, Ed. by M. N. Hill (Willey, New York, 1963), Vol. 2, pp. 26–77.Google Scholar
  32. 32.
    A. Kortzinger, W. Koeve, P. Kahler, and L. Mintrop, “C: N Ratios in the Mixed Layer during the Productive Season in the Northeast Atlantic Ocean,” Deep Sea Res. I 48, 661–688 (2001).CrossRefGoogle Scholar
  33. 33.
    I. I. Volkov and A. G. Rozanov, “Tendencies in the Formation of the Chemical Composition of Waters of Hydrosulfuric Basins,” in Oceanology at the Start of the 21st Century, Ed. by A. L. Vereshchaka (Nauka, Moscow, 2008), pp. 59–77 [in Russian].Google Scholar
  34. 34.
    P. N. Makkaveev, “Variability of Carbonate Equilibrium in Waters of the World Ocean on Diverse Temporal and Spatial Scales,” in Oceanology at the Start of the 21st Century, Ed. by A. L. Vereshchaka (Nauka, Moscow, 2008), pp. 109–156 [in Russian].Google Scholar
  35. 35.
    M. E. Vinogradov, “Evolution of Pelagic Communities and Biotic Balance of the Ocean,” in Oceanology at the Start of the 21st Century, Ed. by A. L. Vereshchaka (Nauka, Moscow, 2008), pp. 257–292 [in Russian].Google Scholar
  36. 36.
    Problems of Life Origin, Ed. by A. Yu. Rozanov (PIN RAN, Moscow, 2009) [in Russian].Google Scholar
  37. 37.
    E. A. Romankevich, Geochemistry of Organic Matter in the Ocean (Springer, Berlin, 1984).CrossRefGoogle Scholar
  38. 38.
    A. P. Lisitsyn, “Marginal Filters and Biofilters of the World Ocean,” in Oceanology at the Start of 21st Century, Ed. by A. L. Vereshchaka (Nauka, Moscow, 2008), pp. 159–224 [in Russian].Google Scholar
  39. 39.
    E. A. Romankevich, A. A. Vetrov, and V. I. Peresypkin, “Organic Matter of the World Ocean,” Russ. Geol. Geophys. 50(4), 299–307 (2009).CrossRefGoogle Scholar
  40. 40.
    V. S. Savenko, “CO2 Exchange between the Ocean and Atmosphere in the Past and Present,” Geochem. Int. 38(3), 313–316 (2000).Google Scholar
  41. 41.
    J. D. Milliman and A. W. Droxler, “Calcium Carbonate Sedimentation in the Global Ocean: Linkages between the Neritic and Pelagic Environments,” Oceanography 8(3), 92–94 (1995).CrossRefGoogle Scholar
  42. 42.
    J. D. Milliman, P. J. Troy, W. M. Balch, A. K. Adams, Y.-H. Li, and F. T. Mackenzie, “Biologically Mediated Dissolution of Calcium Carbonate above the Chemical Lysocline?,” Deep-Sea Res. I 46, 1653–669 (1999).CrossRefGoogle Scholar
  43. 43.
    A. P. Lisitsyn, Oceanic Sedimentation (Nauka, Moscow, 1978) [in Russian].Google Scholar
  44. 44.
    A. V. Borges, B. Delille, and M. Frankignoulle, “Budgeting Sinks and Sources of CO2 in the Coastal Ocean: Diversity of Ecosystems Counts,” Geophys. Res. Lett. 32, L14601 (2005). doi:10.1029/2005GL023053.CrossRefGoogle Scholar
  45. 45.
    V. S. Savenko, “Is Ocean a Source of Carbon Dioxide in the Atmosphere?,” Geokhimiya, No. 11, 1634–1642 (1995).Google Scholar
  46. 46.
    V. S. Savenko, “Transformation of Silicates during Lithogenesis as a Factor Controlling CO2 Content in the Atmosphere,” Vestn. Mosk. Univ., Ser. 5. Geograf., No. 5, 5–11 (2005).Google Scholar
  47. 47.
    V. S. Savenko, “Indirect Uptake of Atmospheric CO2 by the Ocean,” Dokl. Earth Sci. 438(2), 873–875 (2011).CrossRefGoogle Scholar
  48. 48.
    V. S. Savenko, “A Possible Geochemical Mechanism of the Conjugation of the Carbon and Calcium Cycles in the Ocean,” Oceanology 52(2), 191–193 (2012).CrossRefGoogle Scholar
  49. 49.
    Y. F. Makogon, S. A. Holditch, and T. Y. Makogon, “Natural Gas-Hydrates—A Potential Energy Source for the 21st Century,” Petroleum Sci. Engineer. 56, 14–31 (2007).CrossRefGoogle Scholar
  50. 50.
    E. A. Anfilatova, “Analytical Review of Modern Foreign Data on Distribution of Gas Hydrates in the World Basins,” Neftegz. Geol. Teor. Praktika, 3(4), 1–8 (2000). http://www.ngtp.ru Google Scholar
  51. 51.
    A. N. Dmitrievskii and I. E. Balanyuk, Gas-Hydrates of Seas and Oceans as a Source of Future Hydrocarbons (OOO IRTs Gazprom, Moscow, 2009) [in Russian].Google Scholar
  52. 52.
    D. Long, M. A. Lovell, J. G. Rees, and C. A. Rochelle, “Sediment-Hosted Gas Hydrates: New Insights on Natural and Synthetic Systems,” Geol. Soc. London, Sp. Publ. 319, 1–9 (2009).CrossRefGoogle Scholar
  53. 53.
    K. L. Denman, G. Brasseur, A. Chidthaisong, P. Ciais, P. M. Cox, R. E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, P. L. Dias, S. C. Wofsy Silva, and X. Zhang, “Couplings between Changes in the Climate System and Biogeochemistry,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Cambridge University, Cambridge, 2007).Google Scholar
  54. 54.
    A. Yu. Lein and M. V. Ivanov, Biogeochemical Cycle of Methane in the Ocean (Nauka, Moscow, 2009) [in Russian].Google Scholar
  55. 55.
    V. E. Artem’ev, Geochemistry of Organic Matter in the River-Sea System (Nauka, Moscow, 1993) [in Russian].Google Scholar
  56. 56.
    O. A. Bessonov, Geochemical History of Carbon in the Biosphere: Emergence, Formation, and Evolution of the Life Sphere (MP Kniga, Rostov na Donu, 1996) [in Russian].Google Scholar
  57. 57.
    T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks,” Nature Geoscience 1, 95–100 (2008).CrossRefGoogle Scholar
  58. 58.
    V. S. Savenko, Chemical Composition of the Suspended Matter of the World’s Ocean (GEOS, Moscow, 2006) [in Russian].Google Scholar
  59. 59.
    M. Meybeck and A. Ragu, River Discharges to the Oceans: an Assessment of Suspended Solids, Major Ions and Nutrients (UNEP/WHO, 1995).Google Scholar
  60. 60.
    R. K. Klige and V. N. Malinin, “World Ocean Level Oscillations as Integral Indicator of Redistribution of the Hydrosphere Waters,” in Proceedings of 6th All-Russian Hydrographic Conference. Section 3 (Gidrometeoizdat, St. Petersburg, 2004), pp. 14–16 [in Russian].Google Scholar
  61. 61.
    A. V. Mal’tseva, M. N. Tarasov, and M. P. Smirnov, “Organic Runoff from the USSR Territory,” Gidrokhim. Mater. 102 (1987).Google Scholar
  62. 62.
    M. Meybeck, “C, N, P, and S in Rivers: From Sources to Global Inputs,” in Interaction of C, N, P and S. Biogeochemical Cycles and Global Change, Ed. by R. Wollast, R. T. Mackenzie, and L. Chou (Springer, Berlin-Heidelberg, 1993), Vol. 14, pp. 163.CrossRefGoogle Scholar
  63. 63.
    V. E. Artemyev, Geochemistry of Organic Matter in River-Sea System (Kluwer Acad. Publishers, Dordrecht, 1996).CrossRefGoogle Scholar
  64. 64.
    Proceedings of All-Russian Hydrological Conference (Gidrometeoizdat, St. Petersburg, 2004) [in Russian].Google Scholar
  65. 65.
    A. I. Bedritskii, R. S. Khalitov, I. A. Shiklomanov, and I. S. Zektser, “Aqueous Resources of Russia and Their Use in New Social and Economic Conditions with Allowance for Possible Climatic Changes,” in Proceedings of 6th All-Russian Hydrological Conference (Gidrometeoizdat, St. Petersburg, 2004), pp. 3–10 [in Russian].Google Scholar
  66. 66.
    P. A. Kaplin and A. O. Selivanov, Fluctuations of the Russian Sea Levels and Coastal Evolution: Past Present, and Future (GEOS, Moscow, 1999) [in Russian].Google Scholar
  67. 67.
    B. Schlunz and R. R. Schneider, “Transport of Terrestrial Organic Carbon to the Oceans by Rivers: Re-Estimating Fluxand Burial Rates,” J. Earth Sciences 88, 599–606 (2000).CrossRefGoogle Scholar
  68. 68.
    V. Ittekkot, “Global Trends in the Nature of Organic Matter in River au]Suspensions,” Nature 332, 436–438 (1988).CrossRefGoogle Scholar
  69. 69.
    J. I. Hedges and R. G. Keil, “Sedimentary Organic Matter Preservation: An Assessment and Speculative Synthesis,” Mar. Chem. 49, 81–115 (1995).CrossRefGoogle Scholar
  70. 70.
    J. I. Hedges, R. G. Keil, and R. Benner, “What Happens to Terrestrial Organic Matter in the Ocean?,” Org. Geochem. 27, 195–212 (1997).CrossRefGoogle Scholar
  71. 71.
    T. Dittmar and G. Kattner, “The Biogeochemistry of the River and Shelf au]Ecosystem of the Arctic Ocean: A Review,” Mar. Chem. 83, 103–120 (2003).CrossRefGoogle Scholar
  72. 72.
    R. Stein and R. W. Macdonald, “Organic Carbon Budget: Arctic Ocean vs. Global Ocean,” in The Organic Carbon Cycle in the Arctic Ocean, Ed. by R. Stein and R. W. Macdonald (Springer, Berlin, 2004), pp. 315–322.CrossRefGoogle Scholar
  73. 73.
    A. A. Vetrov and E. A. Romankevich, Carbon Cycle in the Russian Arctic Seas (Springer, Berlin, 2004).CrossRefGoogle Scholar
  74. 74.
    G. Cauwet and I. S. Sidorov, “The Biogeochemistry of Lena River: Organic Carbon and Nutrients Distribution,” Mar. Chem. 53, 211–227 (1996).CrossRefGoogle Scholar
  75. 75.
    J. M. Lobbes, H. P. Fitznar, and G. Kattner, “Biogeochemical Characteristics of Dissolved and Particulate Organic Matter in Russian Rivers Entering the Arctic Ocean,” Geochim. Cosmochim. Acta 64, 2973–2983 (2000).CrossRefGoogle Scholar
  76. 76.
    H. Köller, B. Meon, V. V. Gordeev, A. Spitzy, and R. M. W. Amon, “Dissolved Organic Matter (DOM) in the Rivers Ob and Yenisei and the Adjacent Kara Sea,” in Siberian River Run-Off in the Kara Sea: Characterisation, Quantification, Variability, and Environmental Significance. Proceedings in Marine Sciences, Ed. by R. Stein, K. Fahl, D. K. F@utterer, E. M. Galimov, and O. V. Stepanets (Elsevier, Amsterdam, 2003), pp. 281–308.Google Scholar
  77. 77.
    V. Rachold, H. Eicken, V. V. Gordeev, M. N. Grigoriev, H.-W. Hubberten, A. P. Lisitzin, V. P. Shevchenko, and L. Schirmeister, “Modern Terrigenous Organic Carbon Input to the Arctic Ocean,” in The Organic Carbon Cycle in the Arctic Ocean, Ed. by R. Stein and R. W. Macdonald (Springer, Berlin, 2004), pp. 33–55.CrossRefGoogle Scholar
  78. 78.
    R. M. W. Amon and R. Benner, “Bacterial Utilization of Different Size Classes of Dissolved Organic Matter,” Limnol. Oceanogr. 41, 41–51 (1996).CrossRefGoogle Scholar
  79. 79.
    S. V. Ryanzhin, “How Many Lakes are on Earth?,” Priroda (Moscow, Russ. Fed.), No. 4, 18–25 (2005).Google Scholar
  80. 80.
    S. V. Ryanzhin, “New Estimates for Global Surface Area and Volume of Natural World Lakes,” Dokl. Earth Sci. 401(2), 253–257 (2005).Google Scholar
  81. 81.
    M. Meybeck, “Global Distribution of Lakes,” in Physics and Chemistry of Lakes, Ed. by A. Lerman, D. Imboden, and J. Gat (Berlin-Heidelberg, 1995), pp. 1–36.CrossRefGoogle Scholar
  82. 82.
    J. A. Downing, Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack, and J. J. Middelburg, “The Global Abundance and Size Distribution of Lakes, Ponds, and Impoundments,” Limnol. Oceanogr. 51, 2388–2397 (2006).CrossRefGoogle Scholar
  83. 83.
    L. J. Tranvik, J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. McCallister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, Y. Prairie, W. H. Renwick, F. Roland, B. S. Sherman, D. W. Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor, E. von Wachenfeldt, and G. A. Weyhenmeyer, “Lakes and Reservoirs as Regulators of Carbon Cycling and Climate,” Limnol. Oceanogr. 54(6) Part 2, 2298–2314 (2009).CrossRefGoogle Scholar
  84. 84.
    V. L. Louis, C. A. Kelly, E. Duchemin, J. W. M. Rudd, and D. M. Rosenberg, “Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate,” BioScience 50, 766–775 (2000).CrossRefGoogle Scholar
  85. 85.
    B. F. Chao, Y. H. Wu, and Y. S. Li, “Impact of Artificial Reservoir Water Impoundment on Global Sea Level,” Science 320, 212–214 (2008).CrossRefGoogle Scholar
  86. 86.
    P. C. Hanson, A. I. Pollard, D. L. Bade, K. Ppredickw, S. R. Carpenter, and J. A. Foley, “A Model of Carbon Evasion and Sedimentation in Temperate Lakes,” Global Change Biology 10, 1285–1298 (2004).CrossRefGoogle Scholar
  87. 87.
    S. Sobek, L. J. Tranvik, Y. T. Prairie, P. Kortelainen, and J. J. Cole, “Patterns and Regulation of Dissolved Organic Carbon: An Analysis of 7,500 Widely Distributed Lakes,” Limnol. Oceanogr. 52, 1208–1219 (2007).CrossRefGoogle Scholar
  88. 88.
    P. C. Hanson, S. R. Carpenter, J. A. Cardille, M. T. Coe, and L. A. Winslow, “Small Lakes Dominate a Random Sample of Regional Lake Characteristics,” Freshwater Biology 52, 814–822 (2007).CrossRefGoogle Scholar
  89. 89.
    T. Yoshioka, Kh. M. G. Mostafa, E. Konohira, E. Tanoue, K. Hayakawa, M. Takahashi, S. Ueda, M. Katsuyama, T. Khodzher, N. Bashenkhaeva, I. Korovyakova, L. Sorokovikova, and L. Gorbunova, “Distribution and Characteristics of Molecular Size Fractions of Freshwater-Dissolved Organic Matter in Watershed Environments: Its Implication to Degradation,” Limnology 8, 29–44 (2007).CrossRefGoogle Scholar
  90. 90.
    L. M. Sorokovikova, V. N. Sinyukovich, T. V. Khodzher, L. P. Golobokova, N. V. Bashenkhaeva, and O. G. Netsvetaeva, “Influx of Biogenic Elements and Organic Matters from Lake Baikal with Riverine Waters and Atmospheric Precipitates,” Meteorol. Gidrol., No. 4, 78–86 (2001).Google Scholar
  91. 91.
    T. Yoshioka, Sh. Ueda, T. Khodzher, N. Bashenkhaeva, I. Korovyakova, L. Sorokovikova, and L. Gorbunova, “Distribution of Dissolved Organic Carbon in Lake Baikal and Its Watershed,” Limnology 3, 159–168 (2002).CrossRefGoogle Scholar
  92. 92.
    A. P. Ostapenia, A. Parparov, and T. Berman, “Lability of Organic Carbon in Lakes of Different Trophic Status,” Freshwater Biology 54, 1312–1323 (2009).CrossRefGoogle Scholar
  93. 93.
    W. Grane’li, M. J. Lindell, and L. J. Tranvik, “Photooxidative Production of Dissolved Inorganic Carbon in Lakes of Different Humic Content,” Limnol. Oceanogr. 41, 698–706 (1996).CrossRefGoogle Scholar
  94. 94.
    D. Bastviken, J. J. Cole, M. L. Pace, and M. C. van de Bogert, “Fates of Methane from Different Lake Habitats: Connecting Whole-Lake Budgets and CH4 Emissions,” J. Geophys. Res. 113, G02024 (2008). doi:10.1029/2007G000608.CrossRefGoogle Scholar
  95. 95.
    A. D. Duchkov, “Methane Gas-Hydrates in the Sediments of Lake Baikal,” Ros. Khim. Zh. 47(3), 91–100 (2003).Google Scholar
  96. 96.
    R. Samsonov, D. Lyugai, E. Perlova, V. Kvon, S. Leonov, N. Makhonina, and O. Khlystov, “History of Studies of Lake Baikal Gas Hydrates,” Neft’ Gaz. Evraziya, No. 11 (2009); No. 1 (2010).Google Scholar
  97. 97.
    J. A. Leenheer, T. I. Noyes, C. E. Rostad, and M. L. Davisson, “Characterization and Origin of Polar Dissolved Organic Matter from the Great Salt Lake,” Biogeochemistry 69, 125–141 (2004).CrossRefGoogle Scholar
  98. 98.
    P. J. Curtis and H. E. Adams, “Dissolved Organic Matter Quantity and Quality from Freshwater and Saltwater Lakes in East-Central Alberta,” Biogeochemistry 30, 59–76 (1995).CrossRefGoogle Scholar
  99. 99.
    N. V. Aladin, A. A. Filippov, I. S. Plotnikov, M. I. Orlova, and W. D. Williams, “Changes in the Structure and Function of Biological Communities in the Aral Sea, with Particular Reference to the Northern Part (Small Aral Sea), 1985–1994: A Review,” Int. J. Salt Lake Res. 7, 301–343 (1998).Google Scholar
  100. 100.
    T. R. Whittier, D. P. Larsen, S. A. Peterson, and T. M. Kincaid, “A Comparison of Impoundments and Natural Drainage Lakes in the Northeast USA,” Hydrobiologia 470, 157–171 (2002).CrossRefGoogle Scholar
  101. 101.
    S. Sobek, L. J. Tranvik, and J. J. Cole, “Temperature Independence of Carbon Dioxide Supersaturation in Global Lakes,” Glob. Biogeochem. Cycles 19, GB2003 (2005).CrossRefGoogle Scholar
  102. 102.
    C. M. Duarte, Y. T. Prairie, C. Montes, J. J. Cole, R. Striegl, J. Melack, and J. A. Downing, “CO2 Emissions from Saline Lakes: A Global Estimate of a Surprisingly Large Flux,” J. Geophys. Res. 113 (2008). doi: 10.129/2007G000637.Google Scholar
  103. 103.
    J. J. Cole, Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg, and J. Melack, “Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget,” Ecosystems 10, 171–184 (2007).CrossRefGoogle Scholar
  104. 104.
    D. D. Bastviken, J. J. Cole, M. Pace, and L. Tranvik, “Methane Emissions from Lakes: Dependence of Lake Characteristics, Two Regional Assessments, and a Global Estimate,” Glob. Biogeochem. Cycles 18, GB4009 (2004). doi: 10.1029/2004GB002238.CrossRefGoogle Scholar
  105. 105.
    S. E. Vomperskii, “Biospheric Significance of Swamps in the Carbon Cycle,” Priroda (Moscow, Russ. Fed.), No. 7, 44–50 (1994).Google Scholar
  106. 106.
    P. H. Gleick, “Water Resources,” in Encyclopedia of Climate and Weather, Ed. by S. H. Schneider (Oxford Univ., New York, 1996), Vol. 2, pp. 817–823.Google Scholar
  107. 107.
    Assessment on Peatlands, Biodiversity and Climate Change, Ed. by F. Parish, A. Sirin, D. Charman, et al., (Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen, 2008).Google Scholar
  108. 108.
    E. I. Valeeva and D. V. Moskovichenko, Role of Water-Swamp Areas in Sustainable Development of Northern West Siberia (IPOS SO RAN, Tyumen, 2001).Google Scholar
  109. 109.
    J. K. Adamson, W. A. Scott, A. P. Rowland, and G. R. Beard, “Ionic Concentration in a Blanket Peat Bog in Northern England and Correlation with Deposition and Climate Variables,” Eur. J. Soil Sci. 52, 69–79 (2001).CrossRefGoogle Scholar
  110. 110.
    C. Blodau, “Carbon Cycling in Peatlands—A Review of Processes and Controls,” Environ. Rev. 10, 111–134 (2002).CrossRefGoogle Scholar
  111. 111.
    C. M. Yule and L. N. Gomez, “Leaf Litter Decomposition in a Tropical Peat Swamp Forest in Peninsular Malaysia,” Wetlands Ecology and Management 17, 231–241 (2009).CrossRefGoogle Scholar
  112. 112.
    E. A. Golovatskaya and E. E. Veretennikova, “Carbon in Swamp Waters,” in Peatlands of West Siberia and Carbon Cycle: Past and Present. Proceedings of 2nd International Field Symposium, Khanty Mansiisk, Russia, 2007, Ed. by S. E. Vomperskii (Nauchn-Tekhn. Lit., Tomsk, 2007), p. 90 [in Russian].Google Scholar
  113. 113.
    E. S. Ivanova and Yu. A. Kharanzhevskaya, “Determination of Organic Matter Content in Swamp Waters of a High Bog,” in Peatlands of West Siberia and Carbon Cycle: Past and Present. Proceedings of 2nd International Field Symposium, Khanty Mansiisk, Russia, 2007, Ed. by S. E. Vomperskii (Nauchn-Tekhn. Lit., Tomsk, 2007), pp. 98–99 [in Russian].Google Scholar
  114. 114.
    E. S. Voistinova, “Chemical Study of Swamp Waters in the Framework of Ecological Monitoring of Swampy Lands,” in Peatlands of West Siberia and Carbon Cycle: Past and Present. Proceedings of 2nd International Field Symposium, Khanty Mansiisk, Russia, 2011, Ed. by S. E. Vomperskii (Novosibirsk, 2011), pp. 8–9 [in Russian].Google Scholar
  115. 115.
    T. T. Efremova, S. P. Efremov, and A. F. Avrova, “Coupling of Organic Carbon and Environmental Reaction in Swamp Waters,” in Peatlands of West Siberia and Carbon Cycle: Past and Present. Proceedings of 3nd International Field Symposium, Khanty Mansiisk, Russia, 2007, Ed. by S. E. Vomperskii (Novosibirsk, 2011), p. 18 [in Russian].Google Scholar
  116. 116.
    S. V. Briggs, M. T. Maher, and D. J. Tongway, “Dissolved and Particulate Organic Carbon in Two Wetlands in Southwestern New South Wales, Australia,” Hydrobiologia 264, 13–19 (1993).CrossRefGoogle Scholar
  117. 117.
    M. M. Romigh, Organic Carbon Flux at the Mangrove Soil-Water Column Interface in the Florida Coastal Everglades (Texas A&M University, 2005).Google Scholar
  118. 118.
    V. D. Markov, A. S. Olenin, L. A. Ospennikova, E. I. Skobeeva, and P. I. Khoroshev, World’s Peat Resources. A Handbook (Nedra, Moscow, 1988) [in Russian].Google Scholar
  119. 119.
    N. A. Shnyrev, “Problem of Methane Emanation from High Bogs in the Winter Period,” in Peatlands of West Siberia and Carbon Cycle: Past and Present. Proceedings of 2nd International Field Symposium, Khanty Mansiisk, Russia, 2011, Ed. by S. E. Vomperskii (Novosibirsk, 2011), pp. 139–140 [in Russian].Google Scholar
  120. 120.
    H. Joosten and J. Couwenberg, “Peatlands and Carbon,” in Assessment on Peatlands, Biodiversity and Climate Change, Ed. by F. Parish et al. (Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen, 2008), pp. 99–117.Google Scholar
  121. 121.
    H. J. Laanbroek, “Methane Emission from Natural Wetlands: Interplay between Emergent Macrophytes and Soil Microbial Processes. A Mini-Review,” Annals of Botany 105(1), 141–153 (2010).CrossRefGoogle Scholar
  122. 122.
    J. Limpens, F. Berendse, C. Blodau, J. G. Canadell, C. Freeman, J. Holden, N. Roulet, H. Rydin, and G. Schaepman-Strub, “Peatlands and the Carbon Cycle: from Local Processes to Global Implications—A Synthesis,” Biogeosciences 5, 1475–1491 (2008).CrossRefGoogle Scholar
  123. 123.
    J. Couwenberg, R. Dommain, and H. Joodten, “Greenhouse Gas Fluxes from Tropical Peatlands in South-East Asia,” Global Change Biology 16(6), 1715–1732 (2010).CrossRefGoogle Scholar
  124. 124.
    N. E. Shakhova, V. I. Sergienko, and I. P. Semiletov, “Contribution of Eastern Siberian Shelf to the Modern Methane Cycle,” Vestn. Ross. Akad. Nauk 79(6), 507–518 (2009).Google Scholar
  125. 125.
    N. Shakhova, I. Semiletov, and O. Gustafsson, “Methane from the East au]Siberian Arctic Shelf Response,” Science 329(5996), 1147–1148 (2010).CrossRefGoogle Scholar
  126. 126.
    B. Xu, J. Cao, J. Hansen, T. Yao, D. R. Joswia, N. Wang, G. Wu, M. Wang, H. Zhao, W. Yang, X. Liu, and J. He, “Black Soot and the Survival of Tibetan Glaciers,” PNAS, 1-5 (2009). www.pnas.org_cgi_doi_10.1073_pnas.pnas.0910444106.Google Scholar
  127. 127.
    J. D. Barker, M. J. Sharp, S. J. Fitzsimons, and R. J. Turner, “Abundance and Dynamics of Dissolved Organic Carbon in Glacier Systems,” Arctic, Antarctic, and Alpine Res. 38(2), 163–172 (2006).CrossRefGoogle Scholar
  128. 128.
    E. Hood, J. Fellman, R. G. M. Spencer, P. J. Hernes, R. Edwards, D. D. Amore, and D. Scott, “Glaciers as a Source of Ancient and Labile Organic Matter to the Marine Environment,” Nature, No. 462, 1044–1047 (2009).Google Scholar
  129. 129.
    M. L. Skidmore, J. M. Foght, and M. J. Sharp, “Microbial Life beneath a High Arctic Glacier,” Appl. Environ. Microbiol. 66(8), 3214–3220 (2000).CrossRefGoogle Scholar
  130. 130.
    Ponomareva, V.V. and Sotnikova, N.S., “Regularities of the Processes of Migration and Accumulation of the Elements in Podzolic Soils. (Lysimetric Studies),” in Biogeochemical Processes in Podzolic Soils (Nauka, Leningrad, 1972), pp. 6–55.Google Scholar
  131. 131.
    E. I. Pankova, Genesis of Salinization of Desert Soils (Pochvennyi institut im. V.V. Dokuchaeva, Moscow, 1992) [in Russian].Google Scholar
  132. 132.
    G. A. Zavarzin and V. N. Kudeyarov, “Soil as Main Source of Hydrocarbonic Acid in Reservoirs of Organic Carbon in Russia,” Vestnik Ross. Akad. Nauk 76(1), 14–29 (2006).Google Scholar
  133. 133.
    I. Sabol’ch, “Soil Salinization and Alkalinization,” in Modeling of Soil Salinization and Alkalinization, Ed. by V. A. Kovda and I. Sobol’ch (Nauka, Moscow, 1980), pp. 9–39 [in Russian].Google Scholar
  134. 134.
    E. M. Thurman Organic Geochemistry of Natural Waters (Kluwer Acad. Publ., 1985).CrossRefGoogle Scholar
  135. 135.
    R. C. Antweiler and J. I. Drever, “The Weathering of a Late Tertiary Volcanic Ash: Importance of Organic Solutes,” Geochim. Cosmochim. Acta 47, 623–629 (1983).CrossRefGoogle Scholar
  136. 136.
    N. D. Starikova, “Organic Matter,” in Pacific Ocean. Chemistry of the Pacific Ocean, Ed. by V. G. Kort (Nauka, Moscow, 1966), pp. 329–334 [in Russian].Google Scholar
  137. 137.
    E. A. Romankevich, Geochemistry of Organic Matter in the Ocean (Nauka, Moscow, 1977) [in Russian].Google Scholar
  138. 138.
    S. V. Bruevich, Problems of Marine Chemistry (Nauka, Moscow, 1978) [in Russian].Google Scholar
  139. 139.
    P. Meister, M. Prokopenko, C. G. Skilbeck, M. Watson, and J. A. McKenzie, “Compilation of Total Organic and Inorganic Carbon Data from Peru Margin and Eastern Equatorial Pacific Drill Sites (ODP Legs 112, 138, and 201),” Proc Ocean Drill. Progr. Sci. Res., Ed. by B. B. Jørgensen, S. L. D’Hondt, and D. J. Miller, 201, Ch. 8, 1–20 (2005).Google Scholar
  140. 140.
    D. Smith, “Dissolved Organic Carbon in Interstitial Waters, Equatorial Pacific and Peru Margin, ODP Leg 201,” Proc Ocean Drill. Progr. Sci. Res., Ed. by B. B. Jørgensen, S. L. D’Hondt, and D. J. Miller, 201, Ch. 9, 1–20 (2005).Google Scholar
  141. 141.
    A. B. Ronov, A. A. Yaroshevsky, and A. A. Migdisov, Chemical Structure of the Earth’s Crust and Geochemical Balance of Major Elements (Nauka, Moscow, 1990) [in Russian].Google Scholar
  142. 142.
    A. A. Yaroshevsky, “Abundances of Chemical Elements in the Earth’s Crust,” Geochem. Int. 44(1), 48–55 (2006).CrossRefGoogle Scholar
  143. 143.
    Yu. I. Lyakhin and O. A. Alekin, “Saturation of Ocean Waters in Calcium Carbonate,” in Oceanology. Chemistry of Ocean. Chemistry of Ocean Waters, Ed. by O. K. Bordovskii and V. N. Ivanenkov (Nauka, Moscow, 1979), Vol. 1, pp. 96–107 [in Russian].Google Scholar
  144. 144.
    V. P. Zverev and I. A. Kostikova, Sedimentation Waters of the Caspian Sedimentary Basin (Masses and Mass Fluxes) (Nauchnyi mir, Moscow, 2008) [in Russian].Google Scholar
  145. 145.
    S. L. Shvartsev, Hydrochemistry of the Supergene Zone (Nedra, Moscow, 1998) [in Russian].Google Scholar
  146. 146.
    S. R. Krainov, B. N. Ryzhenko, and V. M. Shvets, Geochemistry of Groundwaters. Theoretical, Applied, and Ecological Aspects (Nauka, Moscow, 2004) [in Russian].Google Scholar
  147. 147.
    I. S. Zetsker, World’s Groundwaters. Resources, Usage, and Forecast (Nauka, Moscow, 2007) [in Russian].Google Scholar
  148. 148.
    V. V. Kolodii and O. D. Shtorgin, Organic Matter in Groundwaters of the Crimean-Black Sea Petroleum Province and Their Prospecting Significance (Naukova dumka, Kiev, 1982) [in Russian].Google Scholar
  149. 149.
    R. G. Dzhamalov and I. S. Zektser, “Underground Run-Off in Seas and Its Role in the Formation of Their Aqueous and Salt Balance,” in World’s Groundwaters: Resources, Use, and Forecasting, Ed. by I. S. Zektser (Nauka, Moscow, 2007) [in Russian].Google Scholar
  150. 150.
    M. Taniguchi, W. C. Burnett, J. E. Cable, and J. V. Turner, “Investigation of Submarine Groundwater Discharge,” Hydrol. Process 16, 2115–2129 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations