Geochemistry International

, Volume 51, Issue 6, pp 495–504 | Cite as

Hydrothermal and thermal treatment of natural clinoptilolite zeolite from Bigadiç, Turkey: An experimental study

  • Dicle Bal AkkocaEmail author
  • Melek Yιlgιn
  • Melek Ural
  • Hasan Akçin
  • Ayhan Mergen


The clinoptilolite rich zeolite from Bigadiç which was formed from alteration of volcanic glass were treated with acidic (HCl, H3BO3, H3PO4), alkaline (KOH, NaOH) solutions. Hydrothermally treated and untreated samples were heat treated at 400, 550 and 700°C. XRD, ICP-MS and N2 gas adsorption were used for physicochemical characterization of zeolites. Considering the Si/Al > 4 and Na+K/Ca+Mg < 1 ratios, zeolite sample is included to earth alkali clinoptilolite class (Heu II) which is also revealed by thermal treatments. Since zeolite structure contains low alkalies it was at collapsed 550°C.

The removal of oxide elements efficiency of acids and alkalies were in the order of HCl > H3PO4 > HBO3 > KOH > NaOH. XRD analysis indicated that the structure of zeolite was not altered with acids and alkali treatments. The structure of zeolite treated with HCl and other acids started to deform at 400 and 550°C respectively. In treatment with HCl, Si/Al ratio increases with significant a decrease in K content which resulted in a decrease in the heat stability of zeolite. No change was observed in the structure and thermal stability of clinoptilolite after alkali treatments. The fact that although significant amount of Na is removed with H3BO3 acid and Na is increased with NaOH but the thermal stability remains the same indicates that Na cation is not an important parameter as much as K. HCl and H3PO4 acid treatments increased the surface area depending on the dissolution of amorphous material and H3PO4 was found to be more effective. However, the total pore size decreased due to formation of new micropores.


clinoptilolite dealumination alkaline acid thermal treatment Bigadiç 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Boles, “Composition, Optical Properties, Cell Dimensions and Thermal Stability of Some Heulandite Group Zeolites,” Am. Mineral. 57, 1463–1493 (1972).Google Scholar
  2. 2.
    A. Alietti, “Polymorphism and Crystal Chemistry of Heulandites and Clinoptilolites,” Am. Mineral. 57, 1448–1462 (1970).Google Scholar
  3. 3.
    B. Mason and L. B. Sand, “Clinoptilolite from Patagonia. The Relationships between Clinoptilolite and Heulandite,” Am. Mineral. 45, 341–350 (1960).Google Scholar
  4. 4.
    F. A. Mumton, “Clinoptilolite Redefined,” Am. Mineral. 45, 351–359 (1960).Google Scholar
  5. 5.
    A. Alietti, G. Gottardi, and L. Poppi, “The Heat Behavior of Cation Exchanged Zeolites with Heulandite Structure,” Tschermarks Min. Pet. Mitt. 21, 291–298 (1972).CrossRefGoogle Scholar
  6. 6.
    H. Minato and M. Utada, “Clinoptilolite from Japan,” Adv. Chem. Series 101, 311–316 (1971).CrossRefGoogle Scholar
  7. 7.
    M. Doula and A. Dimirkou, “Copper Adsorption and Si, Al, Ca and Na Release from Clinoptilolite,” J. Colloid. Inter. Sci. 245, 237–.Google Scholar
  8. 8.
    C. H. Baerlocher, W. M. Meier, and D. H. Oslon, “Atlas of Zeolite Framework Types,” (Elsevier, Amsterdam, 2001).Google Scholar
  9. 9.
    V. Campos, L. C. Morais, and P. M. Buncler, “Removel of Chromate from Aqueous Solution using Treated Natural Zeolite,” Environ. Geol. 52(8), 1521–1525 (2006).CrossRefGoogle Scholar
  10. 10.
    E. Valcke, B. Engels, and A. Cremers, “The Use of Zeolites as Amendments Radiocaesium- and Radiostrontium-Contaminated Soils, a Soil-Chemical Approach, Cs-K Exchange in Clinoptilolite and Morderite,” Zeolites 18, 205–211 (1997).CrossRefGoogle Scholar
  11. 11.
    M. W. Ackley, S. R. Rege, and H. Saxena, “Application of Natural Zeolites in the Purification and Separation of Gases,” Micropor. Mesopor. Mater., 61, 25–42 (2003).CrossRefGoogle Scholar
  12. 12.
    D. Zhao, K. Cleare, C. Oliver, et al., “Characteristics of the Synthetic Heulandite-Clinoptilolite Family of Zeolites,” Micropor. Mesopor. Mater., 21, 371–379 (1997).CrossRefGoogle Scholar
  13. 13.
    S. W. Jeong and J. H. Kim, G. Seo, “Liquid-Phase Degradation of HDPE over Alkali-Treated Natural Zeolite Catalysts,” Korean J. Chem. Emg. 18, 848 (2001).CrossRefGoogle Scholar
  14. 14.
    Ch. Panagiotopoulou, E. Kontori, Th. Perraki, et al., “Dissolution of Aluminosilicate Minerals and By-Products in Alkaline Media,” J. Mater. Sci. Lett. 42(9), 2967–2973 (2006).Google Scholar
  15. 15.
    H. C. Lee, H. C. Woo, R. Ryoo, et al., “Skeletal Isomerization of N-butanes to Isobutene over Acid-Treated Natural Clinoptilolite Zeolites,” Appl. Catal. 196, 135–142 (2000).CrossRefGoogle Scholar
  16. 16.
    G. E. Christidis, S. Kosiari, and E. Petavratzi, “Acid Activation and Bleaching Capacity of Bentonites from the Troodos Ophiolite, Cyprus,” Appl. Clay Sci. 24, 79–91 (2003).CrossRefGoogle Scholar
  17. 17.
    R. G. Gevorkyan, H. H. Sargsyan, G. Karamyan, et al., “Study of Absorption Properties of Modified Zeolites,” Chem. Erde — Geochemistry, 62(3), 237–242 (2002).CrossRefGoogle Scholar
  18. 18.
    C. Helvacı and F. Orti, “Sedimentology and Diagenesis of Miocene Clemanite-Ulexite Deposits (Western Anatolia, Turkey),” J. Sediment. Res. 68(5), 1021–1033, (1998).CrossRefGoogle Scholar
  19. 19.
    H. Yalçın and M. N. Gündoǧdu, “Emet ve Kırka Volkanosedimanter Gölsel Basenlerinde Zeolitlerin Kimyasal Bileşimleri, Kristal Morfolojileri ve ısıil kararlılıkları arasındaki ilişkiler,” Doǧa-Türk Yerbilimleri Dergisi 1, 63–75, (1992). (In Turkish).Google Scholar
  20. 20.
    Erkül, F., Helvacı, C., Sözbilir, H., “Olivine Basalt and Trachyandesite Peperites formed at the Subsurface/Surface Interface of a Semi-Arid Lake: An Example from the Early Miocene Bigadi-Basin, Western Turkey,” J. Volcanol. Geotherm. Res. 149, 240–262, (2006).CrossRefGoogle Scholar
  21. 21.
    M. N. Gündoǧdu, H. Yalçın, A. Temel, et al., “Geological, Mineralogical and Geochemical Characteristics of Zeolite Deposits Associated with Borates in the Bigadi-, Emet and Kırka Neogene Lacustrine Basins, Western Turkey,” Mineral Deposita 31, 492–451 (1996).CrossRefGoogle Scholar
  22. 22.
    M.N. Gündoǧdu, Neojen Yaşlı Bigadiç Sedimanter Baseninin Jeolojik, Mineralojik ve Jeokimyasal Incelenmesi, PhD. Thesis (Ankara, 1982). (In Turkish).Google Scholar
  23. 23.
    R. Toprak and I. Girgin, “Aktifle tirilmi Klinoptilolit ile Deri Sanayii atιk Sularιndan Kromun Giderilmesi,” in TUB TAK Ed. by T. J. Engin., Environ. Sci. 24, 343–351 (2000) (In Turkish).Google Scholar
  24. 24.
    F. Cakicioǧlu-Ozkan and S. Ulku, “The Effect of HCl Treatment on Water Vapor Adsorption Characteristics of Clinoptilolite Rich Natural Zeolite,” Micropor. Mesopor. Mater. 77, 47–53, (2005).CrossRefGoogle Scholar
  25. 25.
    S. Brunauer, P. H. Emmet and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc. 60, 309–319, (1938).CrossRefGoogle Scholar
  26. 26.
    E. P. Barrett, L. G. Joyner, and P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances: I. Computations from Nitrogen Isotherms,” J. Am. Chem. Soc., 73, 373–380, (1951).CrossRefGoogle Scholar
  27. 27.
    M. M. Dubinin, “The Potential Theory of Adsorption of Gases and Vapors au]for Adsorbents with Energetically Nonuniform Surfaces,” Chem. Rev. 60, 1–70, (1960).CrossRefGoogle Scholar
  28. 28.
    S. Yamamoto, S. Suriyama, M. Osamu, et al., “Dissolution of Zeolite in Acidic and Alkaline Aqueous Solutions as Revealed by AFM Imaging,” J. Phys. Chem. 100, 474–482, (1996).CrossRefGoogle Scholar
  29. 29.
    K. Okada, N. Arimitsu, Y. Kameshima, et al., “Preparation of Porous Silica from Chlorite by Selective Acid Leaching,” Appl. Clay Sci. 30, 116–124, (2005).CrossRefGoogle Scholar
  30. 30.
    W. P. Gates, M. D. Anderson, M. D. Raven, et al., “Mineralogy of Bentonite from Miles, Quesland, Australia and Characterisation of Acid Activation Products,” Clay Geotechn. Eng., Appl. Clay Sci. 20, 189–197 (2002).CrossRefGoogle Scholar
  31. 31.
    K. Okada, A. Shimail, T. Takei, et al., “Preparation of Microporous Silica from Metakaolinite by Selective Leaching Method,” Micropor. Mesopor. Mater. 21, 289–296 (1998).CrossRefGoogle Scholar
  32. 32.
    M. Rozic, S. Cerjan-Stefanovic, and L. Curkovic, “Evaluation of Croation Clinoptilolite and Montmorillonit-Rich Tuffs Ammonium Removal,” Croat. Chem. Acta 75, 255–269, (2002).Google Scholar
  33. 33.
    X. Cheng, Y. Zhong, J. Wang, et al., “Studies on Modificaton and Structural Ultra-Stabilization of Natural STI Zeolite,” Micropor. Mesop. Mater. 83, 233–243 (2005).CrossRefGoogle Scholar
  34. 34.
    N. C. Brady, The Nature and Properties of Soils, 14th Ed. (New York, 1990).Google Scholar
  35. 35.
    N. Kantiramis, C. M. Chrissafis, and K. Paraskevopoulos, “Thermal Distinction of HEU-Type Mineral Phases Contained in Greek Zeolite-Rich Volcaniclastic Tuffs,” Eur. J. Miner. 18(4), 509–516, (2006).CrossRefGoogle Scholar
  36. 36.
    Sr. Petrov,, “X-Ray Powder Diffraction Studies of Cation Exchanged Natural Zeolites,” in Mat. 1st. Nat. Symp. Diffr. Methods, 156 (1983).Google Scholar
  37. 37.
    R. I. Iznaga, A. Gomez, G. Rodriguez-Fuentes, et al., “Natural Clinoptilolite as Exchanger of Ni+ and NH4+ Ions under Hydrothermal Conditions and High Ammonia Concentration,” Micropor. Mesopor. Mater. 53, 71–80 (2002).CrossRefGoogle Scholar
  38. 38.
    A. Rivera, G. Rodríguez-Fuentes, and E. Altshuler, “Characterization and Neutralizing Properties of a Natural Zeolite/Na2CO3 Composite Material,” Micropor. Mesopor. Mater. 24, 51–58, (1998).CrossRefGoogle Scholar
  39. 39.
    A. Alietti, M. F. Brigatti, and L. Poppi, “Natural Carich Clinoptilolite (Heulandites of Group 3: New Data and Review,” N. Jb. Miner. 11, 493–501 (1977).Google Scholar
  40. 40.
    P. Misaelides, A. Godelitsas, F. Link, et al., “Application of the Al (pγ)28 Si Nuclear Reaction to the Characterization of the Near Surface Layers of Acid Treated HEU-Type Zeolite Crystals,” Micropor. Mesopor. Mater. 6, 37–42, (1996).CrossRefGoogle Scholar
  41. 41.
    A. Alberti, “The Crystal Structure of Two Clinoptilolites,” Tshermarks Min. Pet. Mitt. 19, 176–184, (1975).Google Scholar
  42. 42.
    A. Langella, M. Pansini, G. Cerr, et al., “Thermal Behavior of Natural and Cation-Exchanged Clinoptilolite from Sardinia (Italy),” Clays Clay Miner. 51(6), 625–633, (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Dicle Bal Akkoca
    • 1
    Email author
  • Melek Yιlgιn
    • 2
  • Melek Ural
    • 1
  • Hasan Akçin
    • 3
  • Ayhan Mergen
    • 4
  1. 1.Engineering Faculty, Geological EngineeringFirat UniversityElazigTurkey
  2. 2.Engineering Faculty, Chemical EngineeringFirat UniversityElazigTurkey
  3. 3.Eti Mine Works General ManagementAnkaraTurkey
  4. 4.Metallurgical and Materials Engineering DepartmentMarmara UniversityIstanbulTurkey

Personalised recommendations