Advertisement

Geochemistry International

, Volume 51, Issue 3, pp 173–204 | Cite as

Late pleistocene sedimentation history of the Shirshov Ridge, Bering Sea

  • M. A. LevitanEmail author
  • T. G. Kuzmina
  • V. L. Luksha
  • I. A. Roshchina
  • K. V. Syromyatnikov
  • L. Max
  • D. Nuernberg
  • J. -R. Riethdorf
  • R. Tiedemann
Article

Abstract

The analysis of the lithology, grain-size distribution, clay minerals, and geochemistry of Upper Pleistocene sediments from the submarine Shirshov Ridge (Bering Sea) showed that the main source area was the Yukon-Tanana terrane of Central Alaska. The sedimentary materials were transported by the Yukon River through Beringia up to the shelf break, where they were entrained by a strong northwestward-flowing sea current. The lithological data revealed several pulses of ice-rafted debris deposition, roughly synchronous with Heinrich events, and periods of weaker bottom-current intensity. Based on the geochemical results, we distinguished intervals of an increase in paleoproductivity and extension of the oxygen minimum zone. The results suggest that there were three stages of deposition driven by glacioeustatic sea-level fluctuations and glacial cycles in Alaska.

Keywords

bottom sediments Shirshov Ridge Yukon River Alaska Bering Strait grain-size analysis clay minerals geochemistry sedimentation sea-level glaciation paleoproductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Lisitsin, Recent Sedimentation in the Bering Sea (Nauka, Moscow, 1966) [in Russian].Google Scholar
  2. 2.
    A. N. Sukhov, V. D. Chekhovich, A. V. Lander, S. L. Presnyakov, and E. N. Lepekhina, “Age of the Shirshov Submarine Ridge Basement (Bering Sea) Based on the Results of Investigation of Zircons Using the U-Pb SHRIMP Method,” Dokl. Earth Sci. 439(2), 926–932 (2011).CrossRefGoogle Scholar
  3. 3.
    M. A. Levitan, Yu. A. Lavrushin, and R. Stein, Reviews of the Sedimentation History in the Arctic Ocean and Subarctic Region for the Last 130 kyr (GEOS, Moscow, 2007) [in Russian].Google Scholar
  4. 4.
    S. A. Gorbarenko, N. Harada, M. I. Malakhov, Y. P. Vasilenko, A. A. Bosin, and E. L. Goldberg, “Orbital and Millennial-Scale Environmental and Sedimentological Changes in the Okhotsk Sea during the Last 350 kyr,” Glob. Planet. Change 72, 79–85 (2010).CrossRefGoogle Scholar
  5. 5.
    E. Sakshaug, “Primary and Secondary Production in the Arctic Seas,” in The Arctic Ocean Organic Carbon Cycle: Present and Past, Ed. by R. Stein and R. W. MacDonald (Springer, Berlin, 2004), pp. 57–82.CrossRefGoogle Scholar
  6. 6.
    SO201-KALMAR Leg 2 Cruise Report, Ed. by C. Dullo, B. Baranov, and C. van den Bogaard (IFM-GEOMAR, Kiel, 2009).Google Scholar
  7. 7.
    S. Gorbarenko, “Stable Isotope and Lithological Evidence of Late-Glacial and Holocene Oceanography of the Northwestern Pacific and Its Marginal Seas,” Quat. Res. 46, 230–250 (1996).CrossRefGoogle Scholar
  8. 8.
    M. Cherepanova, S. Gorbarenko, M. Malakhov, and D. Nürnberg, “Diatom Stratigraphy and Paleogeography of the Western Bering Sea over the Past 170 ka,” in KALMAR Workshop Program and Abstracts, (IFMGEOMAR, Trier, 2011), pp. 31–32.Google Scholar
  9. 9.
    M. Malakhov, S. Gorbarenko, D. Nürnberg, R. Tiedemann, G. Malakhova, and J.-R. Riethdorf, “Geomagnetic Relative Paleointensity of Sediment Cores of the Western Bering Sea and NW Pacific,” in KALMAR Workshop Program and Abstracts (IFM-GEOMAR, Trier, 2011), p. 83.Google Scholar
  10. 10.
    E. Ovsepyan, E. Ivanova, I. Murdmaa, T. Alekseeva, and A. Bosin, “Glacial-Interglacial Environmental Changes on the Shirshov Ridge, Western Bering Sea: Micropaleontological and Sedimentary Records from Core SO 201-2-85 KL,” in KALMAR Workshop Program and Abstracts (IFM-GEOMAR, Trier, 2011), pp. 89–91.Google Scholar
  11. 11.
    J.-R. Riethdorf, “Late Pleistocene to Holocene Changes in Upper-Ocean Stratification and Its Impact on Marine Productivity, Sea Surface Temperatures, and Salinity in the Subarctic Northwest Pacific,” Ph. D. Thesis. (GEOMAR, Kiel, 2012).Google Scholar
  12. 12.
    P. Biscaye, “Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans,” Geol. Soc. Am. Bull. 76, 803–832 (1965).CrossRefGoogle Scholar
  13. 13.
    M. A. Levitan, I. A. Roshchina, and A. V. Tolmacheva, “Geochemical Features of Sediments on the Continental Slope of the Weddell Sea and Their Paleoceanographic Interpretation,” Lithol. Miner. Resour. 43(2), 111–124 (2008).CrossRefGoogle Scholar
  14. 14.
    M. A. Levitan, I. A. Roshchina, V. Yu. Rusakov, K. V. Syromyatnikov, and R. Spielhagen, “Quaternary History of Sedimentation on the Submarine Lomonosov Ridge, North Arctic Ocean,” in Structure and Evolution of the Lithosphere, Ed. by Yu. G. Leonov (Paulsen Editions, Moscow-St. Petersburg, 2010), pp. 464–490 [in Russian].Google Scholar
  15. 15.
    M. A. Levitan, I. A. Roshchina, V. Yu. Rusakov, K. V. Syromyatnikov, and R. Spielhagen, “History of Sedimentation on the Submarine Continental Margin of the Kara Sea over the Last 190 ka,” in Geology and Geoecology of the Eurasian Continental Margins, Ed. by Yu.A. Lavrushin (GEOS, Moscow, 2010), Vol. 2, pp. 174–198 [in Russian].Google Scholar
  16. 16.
    V. G. Shlykov, X-Ray Analysis of Mineral Composition of Dispersed Sois (GEOS, Moscow, 2006) [in Russian].Google Scholar
  17. 17.
    D. A. Darby, A. S. Naidu, T. C. Mowatt, and G. A. Jones, “Sediment Composition and Sediment Processes in the Arctic Ocean,” in The Arctic Seas: Climatology, Oceanography, Geology, and Biology, Ed. by Y. Herman (VanNostrand Reinhold, New York, 1989), pp. 657–720.Google Scholar
  18. 18.
    F. C. Moser and J. R. Hein, “Distribution of Clay Minerals in the Suspended and Bottom Sediments from the Northern Bering Sea Shelf Area,” US Geol. Surv. Bull., No. 1624 (2008).Google Scholar
  19. 19.
    C. Müller, “Rekonstruktion der Palao-Umweltbedingungen am Laptev-See-Kontinentalrand wahrend der beiden letzten Glazial/Interglazial-Zyclen anhand sedimentologischer und mineralogischer Untersuchungen,” Ber. Polarforsch., No. 328 (1999).Google Scholar
  20. 20.
    C. Sancetta, L. Heusser, L. Labeyrie, S. A. Naidu, and S.W. Robinson, “Wisconsin-Holocene Paleoenvironment of the Bering Sea: Evidence from Diatoms, Pollen, Oxygen Isotopes and Clay Minerals,” Mar. Geol. 62, 55–68 (1985).CrossRefGoogle Scholar
  21. 21.
    H. Champley, Clay Sedimentology (Springer, New York-Berlin, 1989).Google Scholar
  22. 22.
    C. Dusel-Bacon, “Metamorphic History of Alaska,” in The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994), pp. 495–534.Google Scholar
  23. 23.
    E. J. Moll-Stalcup, “Latest Cretaceous and Cenozoic Magmatism in Mainland Alaska,” in The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994), pp. 589–620.Google Scholar
  24. 24.
    H. L. Foster, T. E. C. Keith, and W. D. Menzie, “Geology of the Yukon-Tanana Area of East Central Alaska,” in The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994), pp. 205–240.Google Scholar
  25. 25.
    A. B. Ronov, A. A. Yaroshevskii, and A. A. Migdisov, Chemical Structure of the Earth’s Crust and Geochemical Balance of Major Elements (Nauka, Moscow, 1990) [in Russian].Google Scholar
  26. 26.
    The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994).Google Scholar
  27. 27.
    Th. E. Moore, W. K. Wallace, K. J. Bird, S. M. Karl, Ch. G. Mull, and J. T. Dillon, “Geology of Northern Alaska,” in The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994), pp. 49–140.Google Scholar
  28. 28.
    M. A. Levitan, M. V. Bourtman, L. L. Demina, V. V. Krupskaya, E. M. Sedykh, and M. Yu. Chudetskii, “History of Holocene Sedimentation in the Southern Kara Sea,” Lithol. Miner. Resour. 39(6), 566–579 (2004).CrossRefGoogle Scholar
  29. 29.
    D. Gallego-Torres, F. Martinez-Ruiz, A. Paytan, F. J. Jimenez-Espejo, and M. Ortega-Huertas, “Pliocene-Holocene Evolution of Depositional Conditions in the Eastern Mediterranean: Role of Anoxia Vs. Productivity at Time of Sapropel Deposition,” Palaeogeography, Palaeoclimatology, Palaeoecology 209, 424–439 (2004).Google Scholar
  30. 30.
    S. Van Laningham, N. G. Pisias, R. A. Duncan, and P. D. Clift, “Glacial-Interglacial Sediment Transport to the Meiji Drift, Northwest Pacific Ocean: Evidence for Timing of Beringian Outwashing,” Earth Planet. Sci. Lett. 277, 64–72 (2009).CrossRefGoogle Scholar
  31. 31.
    M. Sarnthein, K. Stattegger, D. Dreger, H. Erlenkeuser, P. Grootes, B. J. Haupt, S. Jung, T. Kiefer, W. Kuhnt, U. Pflaumann, C. Schafer-Neth, H. Schulz, M. Schulz, D. Seidov, J. Simstich, S. van Kreveld, E. Vogelsang, A. Volker, and M. Weinelt, “Fundamental Models and Abrupt Changes in North Atlantic Circulation and Climate over the Last 60 ky-Concepts, Reconstruction, and Numerical Modeling,” in The Northern North Atlantic: A Changing Environment (Springer, Berlin, 2001), pp. 365–410.CrossRefGoogle Scholar
  32. 32.
    M. A. Levitan and Yu. A. Lavrushin, Sedimentation History in the Arctic Ocean and Subarctic Seas for the Last 130 kyr (Springer, Berlin, 2009).CrossRefGoogle Scholar
  33. 33.
    B. J. L. Jensen, D. G. Froese, S. J. Preece, J. A. Westgate, and T. Stachel, “An Extensive Middle to Late Pleistocene Tephrochronological Record from East-Central Alaska,” Quat. Sci. Rev. 27, 411–427 (2008).CrossRefGoogle Scholar
  34. 34.
    D. M. Hopkins, “Aspects of the Paleogeography of Beringia during the Late Pleistocene,” in Paleoecology of Beringia (Academic Press, New York, 1982), pp. 3–28.Google Scholar
  35. 35.
    G. R. Bigg, C. D. Clark, and A. L. C. Hughes, “A Last Glaciation Sheet on the Pacific Russian Coast and Catastrophic Change Arising from Coupled Ice-Volcanic Interaction,” Earth Planet. Sci. Lett. 265, 559–570 (2008).CrossRefGoogle Scholar
  36. 36.
    T. D. Hamilton, “Late Cenozoic Glaciation of Alaska,” in The Geology of Alaska, Ed. by G. Plafker and H. C. Berg (Geol. Soc. Am., Boulder, 1994), pp. 813–844.Google Scholar
  37. 37.
    V. S. Pushkar and M. V. Cherepanova, “Beringia: Impact of Paleoclimates of Northeast Asia and North Pacific during Last Pleistocene Glaciation,” Quat. Int. 237, 32–38 (2011).CrossRefGoogle Scholar
  38. 38.
    D. S. Kaufman and W. F. Manley, “Pleistocene Maximum and Late Wiskonsian Glacier Extends across Alaska, USA,” in Quaternary Glaciations—Extent and Chronology, Ed. by J. Ehlers and P. L. Gibbard (Elsevier, Amsterdam, 2004), pp. 9–27.Google Scholar
  39. 39.
    J. Brigham-Grette, L. M. Gualtieri, O. Yu. Glushkova, T. D. Hamilton, D. Mostoller, and A. Kotov, “Chlorine-36 and 14C Chronology Support a Limited Last Glacial Maximum across Chukotka, North-Eastern Siberia, and No Beringian Ice Sheet,” Quat. Res. 59, 386–398 (2003).CrossRefGoogle Scholar
  40. 40.
    G. Stauch and L. Gualtieri, “Late Quaternary Glaciations in Northeastern Russia,” J. Quat. Sci. 23, 545–558 (2008).CrossRefGoogle Scholar
  41. 41.
    H. J. Knebel and J. S. Creager, “Yukon River: Evidence for Extensive Migration during the Holocene Transgression,” Science 179, 1230–1232 (1973).CrossRefGoogle Scholar
  42. 42.
    H. Bauch, H. Kassens, H. Erlenkeuser, P. M. Grootes, and J. Thiede, “Depositional Environment of the Laptev Sea (Arctic Siberia) during the Holocene,” Boreas 28, 194–204 (1999).CrossRefGoogle Scholar
  43. 43.
    S. A. Gorbarenko, J. R. Southon, L. D. Keigwin, M. V. Cherepanova, and I. G. Gvozdeva, “Late Pleistocene-Holocene Oceanographic Variability in the Okhotsk Sea: Geochemical, Lithological and Paleontological Evidence,” Palaeogeography, Palaeoclimatology, Palaeoecology 209, 281–301 (2004).CrossRefGoogle Scholar
  44. 44.
    G. D. Sharma, The Alaskan Shelf. Hydrographic, Sedimentary and Geochemical Environment (Springer-Verlag, New York-Heidelberg-Berlin, 1979).CrossRefGoogle Scholar
  45. 45.
    A. Hu, G. A. Meehl, B. L. Otto-Bliesner, C. Waelbroeck, W. Han, M. -F. Loutre, K. Lambeck, J. X. Mitrovica, and N. Rosenbloom, “Influence of Bering Strait Flow and North Atlantic Circulation on Glacial-Sea Level Changes,” Nature Geosci. 3, 118–121 (2010).CrossRefGoogle Scholar
  46. 46.
    P. J. Stabeno and R. K. Reed, “Circulation in the Bering Sea Observed by Satellite-Tracked Drifters: 1986–1993,” J. Phys. Oceanogr. 24(4), 840–854 (1994).CrossRefGoogle Scholar
  47. 47.
    Ya. E. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. A. Levitan
    • 1
    Email author
  • T. G. Kuzmina
    • 1
  • V. L. Luksha
    • 2
  • I. A. Roshchina
    • 1
  • K. V. Syromyatnikov
    • 1
  • L. Max
    • 4
  • D. Nuernberg
    • 3
  • J. -R. Riethdorf
    • 3
  • R. Tiedemann
    • 4
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of GeologyMoscow State UniversityMoscowRussia
  3. 3.IFM-GEOMARLeibniz-Institut für MeereswissenschaftenKielGermany
  4. 4.AWIAlfred Wegener Institute for Polar and Marine Research, ColumbusstrasseBremerhavenGermany

Personalised recommendations