Geochemistry International

, Volume 50, Issue 6, pp 522–550 | Cite as

Chemical composition, volatile components, and trace elements in the melts of the Gorely volcanic center, southern Kamchatka: Evidence from inclusions in minerals

  • M. L. Tolstykh
  • V. B. Naumov
  • M. G. Gavrilenko
  • A. Yu. Ozerov
  • N. N. Kononkova
Article

Abstract

Melt inclusions in olivine and plagioclase phenocrysts from rocks (magnesian basalt, basaltic andesite, andesite, ignimbrite, and dacite) of various age from the Gorely volcanic center, southern Kamchatka, were studying by means of their homogenization and by analyzing the glasses in 100 melt inclusions on an electron microprobe and 24 inclusions on an ion probe. The SiO2 concentrations of the melts vary within a broad range of 45–74 wt %, as also are the concentrations of other major components. According to their SiO2, Na2O, K2O, TiO2, and P2O5 concentrations, the melts are classified into seven groups. The mafic melts (45–53 wt % SiO2) comprise the following varieties: potassic (on average 4.2 wt % K2O, 1.7 wt % Na2O, 1.0 wt % TiO2, and 0.20 wt % P2O5), sodic (3.2% Na2O, 1.1% K2O, 1.1% TiO2, and 0.40% P2O5), and titaniferous with high P2O5 concentrations (2.2% TiO2, 1.1% P2O5, 3.8% Na2O, and 3.0% K2O). The melts of intermediate composition (53–64% SiO2) also include potassic (5.6% K2O, 3.4% Na2O, 1.0% TiO2, and 0.4% P2O5) and sodic (4.3% Na2O, 2.8% K2O, 1.3% TiO2, and 0.4% P2O5) varieties. The acid melts (64–74% SiO2) are either potassic (4.5% K2O, 3.6% Na2O, 0.7% TiO2, and 0.15% P2O5) or sodic (4.5% Na2O, 3.1% K2O, 0.7% TiO2, and 0.13% P2O5). A distinctive feature of the Gorely volcanic center is the pervasive occurrence of K-rich compositions throughout the whole compositional range (silicity) of the melts. Melt inclusions of various types were sometimes found not only in a single sample but also in the same phenocrysts. The sodic and potassic types of the melts contain different Cl and F concentrations: the sodic melts are richer in Cl, whereas the potassic melts are enriched in F. We are the first to discover potassic melts with very high F concentrations (up to 2.7 wt %, 1.19 wt % on average, 17 analyses) in the Kuriles and Kamchatka. The average F concentration in the sodic melts is 0.16 wt % (37 analyses). The melts are distinguished for their richness in various groups of trace elements: LILE, REE (particularly HREE), and HFSE (except Nb). All of the melts share certain geochemical features. The concentrations of elements systematically increase from the mafic to acid melts (except only for the Sr and Eu concentrations, because of active plagioclase fractionation, and Ti, an element contained in ore minerals). The paper presents a review of literature data on volcanic rocks in the Kurile-Kamchatka area in which melt inclusions with high K2O concentrations (K2O/Na2O > 1) were found. K-rich melts are proved to be extremely widespread in the area and were found on such volcanoes as Avachinskii, Bezymyannyi, Bol’shoi Semyachek, Dikii Greben’, Karymskii, Kekuknaiskii, Kudryavyi, and Shiveluch and in the Valaginskii and Tumrok Ranges.

Keywords

Kamchatka Gorely volcano melt inclusions volatile components trace elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. T. Kirsanov and I. V. Melekestsev, “Gorely Volcano,” in Active Volcanoes in Kamchatka (Nauka, Moscow, 1991), Vol. 2, pp. 294–315 [in Russian].Google Scholar
  2. 2.
    O. B. Selyangin and V. V. Ponomareva, “Structure and Evolution of the Gorelovsky Volcanic Center, Southern Kamchatka,” Vulkanol. Seismol., No. 2, 3–23 (1999).Google Scholar
  3. 3.
    A. A. Chashchin, “Ignimbrites of Gorely Volcano, Southern Kamchatka: Composition and Conditions of Formation,” Tr. Dal’nevost. Gos. Tekhn. Univ., No. 121, Ser. 4, 142–148 (1999).Google Scholar
  4. 4.
    L. N. Khetchikov, V. A. Pakhomova, A. A. Chashchin, and E. G. Odarichenko, “Compositional Features of Silicate Glasses in Melt Inclusions in the Matrix of the Rocks of Gorely Volcano, Southern Kamchatka,” Tr VNIISIM 16, 322—336 (2000).Google Scholar
  5. 5.
    L. N. Khetchikov, A. A. Chashchin, V. A. Pakhomova, and E. G. Odarichenko, “Plagioclase Phenocrysts in the Basalts of Gorely and Mutnovsky Volcanoes, Southern Kamchatka, and Conditions of Their Formation: Melt Inclusion Data,” in Proceedings of 10th International Conference on Thermobarogeochemistry, Aleksandrov, Russia, 2001 (VNIISIM, Aleksandrov, 2001), pp. 111–140.Google Scholar
  6. 6.
    Geodinamika, magmatizm i metallogeniya Dal’nego Vostoka Rossii Geodynamics, Magmatism, and Metallogeny of the Russian Far East (Dal’nauka, Vladivostok, 2006), Book 1 [in Russian].Google Scholar
  7. 7.
    M. G. Gavrilenko, A. Y. Ozerov, P. R. Kyle, and J. C. Eichelberger, “Petrological and Geochemical Characteristics of Magmatic Melts at Gorely Volcano, Kamchatka, Russia,” in AGU Fall Meeting, San Francisco, USA, 2006 (San Francisco, 2006), V11A-0558.Google Scholar
  8. 8.
    S. Duggen, M. Portnyagin, J. Baker, D. Ulfback, K. Hoernle, D. Garbe-Schonberg, N. Grassineau, “Drastic Shift in Lava Geochemistry in Volcanic Front to Rear-Arc Region of the Southern Kamchatkan Subduction Zone: Evidence for the Transition from Slab Surface Dehydration to Sediment Melting,” Geochim. Cosmochim. Acta 71, 452–480 (2007).CrossRefGoogle Scholar
  9. 9.
    M. G. Gavrilenko and A. Yu. Ozerov, “Gorely Volcano: Evolution of Magmatic Melts,” in Proceedings of 4th All-Russian Symposium on Volcanology and Paleovolcanology, Petropavlovsk-Kamchatskii, Russia, 2009 (Petropavlovsk-Kamchatskii, 2009), Vol. 1, pp. 308–310 [in Russian].Google Scholar
  10. 10.
    L. N. Sharpenok, E. A. Kukharenko, and A. E. Kostin, “New Provisions for Volcanogenic Rocks in the Petrographic Code,” J. Volcanol. Seismol. 3(4), 279–293 (2009).CrossRefGoogle Scholar
  11. 11.
    V. B. Naumov, “Thermometric Studies of Melt Inclusions in the Quartz Phenocrysts of Quartz Porphyries,” Geokhimiya, No. 4, 494–498 (1969).Google Scholar
  12. 12.
    V. B. Naumov and V. I. Fin’ko, “Crystallization Conditions of Phenocrysts in the Cenozoic Alkaline Pumices of Primorye,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 12, 91–95 (1976).Google Scholar
  13. 13.
    A. V. Sobolev, “Melt Inclusions in Minerals as a Source of Principle Petrological Information,” Petrology 4(3), 209–220 (1996).Google Scholar
  14. 14.
    A. A. Nosova, L. V. Sazonova, V. V. Narkisova, and S. G. Simakin, “Minor Elements in Clinopyroxene from Paleozoic Volcanics of the Tagil Island Arc in the Central Urals,” Geochem. Int. 40, 219–232 (2002).Google Scholar
  15. 15.
    M. V. Portnyagin, S. G. Simakin, and A. V. Sobolev, “Fluorine in Primitive Magmas of the Troodos Ophiolite Complex, Cyprus: Analytical Methods and Main Results,” Geochem. Int. 40, 625–632 (2002).Google Scholar
  16. 16.
    M. L. Tolstykh, V. B. Naumov, G. E. Bogoyavlenskaya, and N. N. Kononkova, “The Role of Andesitic-Dacitic-Rhyolitic Melts in the Crystallization of Phenocrysts in Andesite of Bezymyannyi Volcano, Kamchatka,” Geochem. Int. 37, 11–20 (1999).Google Scholar
  17. 17.
    A. V. Sobolev, N. V. Sobolev, K. B. Smit, and N. N. Kononkova, “New Data on Petrology of Olivine Lamproites of Western Australia Based on the Study of Magmatic Inclusions in Olivines,” Dokl. Akad. Nauk SSSR 284(1), 196–201 (1985).Google Scholar
  18. 18.
    A. V. Sobolev, N. V. Sobolev, C. B. Smith, and J. Dubessy, “Fluid and Melt Compositions in Lamproites and Kimberlites Based on the Study of Inclusions in Olivine,” in Proceedings of the 4th International Kimberlite Conference. Kimberlites and Related Rocks, Spec. Publ. Geol. Soc. Aust. 14(1), 220–240 (1989).Google Scholar
  19. 19.
    I. D. Ryabchikov, I. P. Solovova, A. V. Girnis, I. I. Ganeev, L. N. Kogarko, V. B. Naumov, “Conditions of Generation and Crystallization of High-Potassium Magmas,” in Lamproites (Nauka, Moscow, 1991), pp. 218–276 [in Russian].Google Scholar
  20. 20.
    E. Salvioli-Mariani, A. Renzulli, G. Serri, P. M. Holm, L. Toscani, “Glass-Bearing Crustal Xenoliths (Buchites) Erupted during the Recent Activity of Stromboli (Aeolian Island),” Lithos 81, 255–277 (2005).CrossRefGoogle Scholar
  21. 21.
    I. K. Nikogosian and M. J. van Bergen, “Heterogeneous Mantle Sources of Potassium-Rich Magmas in Central-Southern Italy: Melt Inclusion Evidence from Roccamonfina and Ernici (Mid Latina Valley),” J. Volcanol. Geotherm. Res. 197, 279–302 (2010).CrossRefGoogle Scholar
  22. 22.
    S. Sun and W. F. McDonough, in “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. London Spec. Publ. 42, 313–345 (1989).Google Scholar
  23. 23.
    V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, A. V. Girnis, V. V. Yarmolyuk, “Average Compositions of Igneous Melts from Main Geodynamic Settings According to the Investigation of Melt Inclusions in Minerals and Quenched Glasses of Rocks,” Geochem. Int. 48, 1185–1207 (2010).CrossRefGoogle Scholar
  24. 24.
    V. I. Kovalenko, V. B. Naumov, A. V. Girnis, V. A. Dorofeeva, and V. V. Yarmolyuk, “Average Composition of Basic Magmas and Mantle Sources of Island Arcs and Active Continental Margins Estimated from the Data on Melt Inclusions and Quenched Glasses of Rocks,” Petrology 18, 1–26 (2010).CrossRefGoogle Scholar
  25. 25.
    V. I. Kovalenko, V. B. Naumov, A. V. Girnis, V. A. Dorofeeva, V. V. Yarmolyuk, “Canonical Ratios of Trace Element in Basic Magmas of Various Geodynamic Settings: Estimation from Compositions of Melt Inclusions and Rock Glasses,” Dokl. Earth Sci. 426, 611–614 (2009).CrossRefGoogle Scholar
  26. 26.
    V. I. Kovalenko, V. V. Yarmolyuk, V. P. Kovach, D. V. Kovalenko, A. M. Kozlovskii, I. A. Andreeva, A. B. Kotov, and E. B. Sal’nikova, “Variations in the Nd Isotopic Ratios and Canonical Ratios of Concentrations of Incompatible Elements as an Indication of Mixing Sources of Alkali Granitoids and Basites in the Khaldzan-Buregtei Massif and the Khaldzan-Buregtei Rare-Metal Deposit in Western Mongolia,” Petrology 17, 227–252 (2009).CrossRefGoogle Scholar
  27. 27.
    M. T. McCulloch and J. A. Gamble, “Geochemical and Geodynamical Constraints on Subduction Zone Magmatusm,” Earth Planet. Sci. Lett. 102, 358–374 (1991).CrossRefGoogle Scholar
  28. 28.
    S. Duggen, M. Portnyagin, J. Baker, D. Ulfback, K. Hoernle, D. Garbe-Schonberg, and N. Grassineau, “Drastic Shift in Lava Geochemistry in Volcanic Front to Rear-Arc Region of the Southern Kamchatkan Subduction Zone: Evidence for the Transition from Slab Surface Dehydration To Sediment Melting,” Geochim. Cosmochim. Acta 71, 452–480 (2007).CrossRefGoogle Scholar
  29. 29.
    M. L. Tolstykh, A. D. Babanskii, V. B. Naumov, L. I. Bazanova, N. N. Kononkova, “Chemical Composition, Trace Elements, and Volatile Components of Melt Inclusions in Minerals from Andesites of the Avachinskii Volcano, Kamchatka,” Geochem. Int. 40, 1112–1119 (2002).Google Scholar
  30. 30.
    V. L. Leonov and E. N. Grib, Structural Setting and Volcanism of Quaternary Calderas of Kamchatka (Dal’nauka, Vladivostok, 2004) [in Russian].Google Scholar
  31. 31.
    A. V. Sobolev, V. S. Kamenetsky, and N. N. Kononkova, “New Data on the Petrology and Geochemistry of Ultramafic Volcanoes of the Valaginsky Range, Esatern Kamchatka,” Geokhimiya, No. 12, 1694–1709 (1989).Google Scholar
  32. 32.
    M. L. Tolstykh, V. B. Naumov, and N. N. Kononkova, “Composition of Magmas which Formed Dacite of Dikii Greben’ Volcano (Southern Kamchatka): Evidence from the Study of Melt Inclusions,” Geochem. Int. 38 1020–1025 (2000).Google Scholar
  33. 33.
    L. N. Khetchikov, V. A. Pakhomova, V. K. Popov, A. A. Chashchin, V. I. Sapin, “Composition of Melt Inclusions in Minerals and Temperature Regime of Rock Formation of Dikii Greben’ Volcano, Kamchatka,” Tikhookean. Geol. 19(4), 3–11 (2000).Google Scholar
  34. 34.
    V. B. Naumov, M. L. Tolstykh, E. N. Grib, V. L. Leonov, N. N. Kononkova, “Chemical Composition, Volatile Components, and Trace Elements in Melts of the Karymskii Volcanic Center, Kamchatka, and Golovnina Volcano, Kunashir Island: Evidence from Inclusions in Minerals,” Petrology 16, 1–18 (2008).CrossRefGoogle Scholar
  35. 35.
    A. Babansky and I. Solovova, “Mineralogy and Geochemistry of K-Rich Basalts of the Central Part of the Sredinnyi Range, Kamchatka,” in Geochemistry of Magmatic Rocks. 24th Intern. Conf. School “Geochemistry of Alkaline Rocks” (Moscow, 2009), pp. 19–20.Google Scholar
  36. 36.
    V. I. Kovalenko, V. B. Naumov, M. L. Tolstykh, G. M. Tsareva, N. N. Kononkova, “Composition and Sources of Magmas in Medvezh’ya Caldera (Iturup Island, Southern Kuriles) from a Study of Melt Inclusions,” Geochem. Int. 42, 393–413 (2004).Google Scholar
  37. 37.
    V. S. Kamenetskii, M. V. Portnyagin, A. V. Sobolev, and L. V. Danyushevskii, “Crystallization Conditions and Melt Composition of Picrite-Basaltic Sequence of the Tumrok Range, Eastern Kamchatka,” Geokhimiya, No. 8, 1133–1148 (1992).Google Scholar
  38. 38.
    M. L. Tolstykh, V. B. Naumov, A. D. Babanskii, S. A. Khubunaya, N. N. Kononkova, “The Melt Composition and Crystallizational Conditions of Andesites from the Shiveluch Volcano in Kamchatka: Evidence from Mineral-Hosted Inclusions,” Dokl. Earth Sci. 359, 440–443 (1998).Google Scholar
  39. 39.
    M. L. Tolstykh, V. B. Naumov, A. D. Babanskii, S. A. Khubunaya, N. N. Kononkova, “Chemical Composition, Trace Elements, and Volatile Components of Melt Inclusions in Minerals from Andesites of the Shiveluch Volcano, Kamchatka,” Geochem. Int. 38(Suppl. 1), 123–132 (2000).Google Scholar
  40. 40.
    S. F. Foley, G. Venturelli, D. H. Green, and L. Toscan, “The Ultrapotassic Rocks: Characteristics, Classification, and Constraints for Petrogenetic Models,” EarthSci. Rev. 24, 81–134 (1987).CrossRefGoogle Scholar
  41. 41.
    A. H. Maria and J. F. Luhr, “Lamprophyres, Basanites, and Basalts of the Western Mexican Volcanic Belt: Volatile Contents and a Vein-Wallrock Melting Relationship,” J. Petrol. 49(12), 2123–2156 (2008).CrossRefGoogle Scholar
  42. 42.
    N. Vigouroux, P. J. Wallace, and A. J. R. Kent, “Volatiles in High-K Magmas from the Western Trans-Mexican Volcanic Belt: Evidence for Fluid Fluxing and Extreme Enrichment of the Mantle Wedge by Subduction Processes,” J. Petrol. 49(9), 1589–1618 (2008).CrossRefGoogle Scholar
  43. 43.
    M. C. Rowe and J. C. Lassiter, “Chlorine Enrichment in Central Rio Grande Rift Basaltic Melt Inclusions: Evidence for Subduction Modification of the Lithospheric Mantle,” Geology 37(5), 439–442 (2009).CrossRefGoogle Scholar
  44. 44.
    A. Audetat and T. Pettke, “Evolution of a Porphyry-Cu Mineralized Magma System at Santa Rita, New Mexico (USA),” J. Petrol. 47(10), 2021–2046 (2006).CrossRefGoogle Scholar
  45. 45.
    M. C. S. Humprhreys, M. Edmonds, T. Christopher, and V. Hards, “Magma Hybridization and Diffusive Exchange Recorded in Heterogeneous Glasses from Soufriere Hills Volcano, Montserrat,” Geophys. Res. Lett. 37, L00E06 (2010). Doi:10.1029/2009GL041926.CrossRefGoogle Scholar
  46. 46.
    M. V. Portnyagin, V. B. Naumov, N. L. Mironov, I. A. Belousov, N. N. Kononkova, “Composition and Evolution of the Melts Erupted in 1996 at Karymskoe Lake, Eastern Kamchatka: Evidence from Inclusions in Minerals,” Geochem. Int. 49, 1085–1111 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. L. Tolstykh
    • 1
  • V. B. Naumov
    • 1
  • M. G. Gavrilenko
    • 2
  • A. Yu. Ozerov
    • 2
  • N. N. Kononkova
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Volcanology and Seismology, Far East BranchRussian Academy of SciencesPetropavlosk-KamchatskiiRussia

Personalised recommendations