Geochemistry International

, Volume 48, Issue 12, pp 1246–1253 | Cite as

Physicochemical mechanisms of cassiterite and wolframite precipitation in the granite-related hydrothermal system: Thermodynamic modeling

  • T. M. Sushchevskaya
  • A. Yu. Bychkov
Short Communications


Fluid Inclusion Geochemistry International Hydrothermal System Arsenopyrite Cassiterite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Yu. Korotaev, “Physical Geochemistry of Greisen Formation,” (Nauka, Moscow, 1994) [in Russian].Google Scholar
  2. 2.
    L. A. Bannikova, T. M. Sushchevskaya, M. Ju. Spasennykh, and V. L. Barsukov, “Isotopic and Geochemical Study of the Conditions of Tin Ore Formation of the Solnechnoye Deposit (Far East of Russia),” Geochem. J. 28, 411–428 (1994).Google Scholar
  3. 3.
    C. A. Heinrich, “The Chemistry of Hydrothermal Tin (-Tungsten) Ore Deposition,” Econ. Geol. 85, 457–481 (1990).CrossRefGoogle Scholar
  4. 4.
    A. Audetat, D. Gunther, and C. A. Heinrich, “Magmatic-Hydrothermal Evolution in a Fractionating Granite: A Microchemical Study of the Sn-W-F-Mineralized Mole Granite (Australia),” Geochim. Cosmochim. Acta 64, 3373–3393 (2000).CrossRefGoogle Scholar
  5. 5.
    N. S. Bortnikov, A. I. Khanchuk, T. L. Krylova, et al., “Geochemistry of the Mineral-Forming Fluids in Some Tin-Bearing Hydrothermal Systems of Sikhote Alin, the Russian Far East,” Geol. Rudn. Mestorozhd. 47(6), 537–570 (2005) [Geol. Ore Dep. 47, 488–516 (2005)].Google Scholar
  6. 6.
    P. Macey and C. Harris, “Stable Isotope and Fluid Inclusion Evidence for the Origin of the Brandberg West Area Sn-W Vein Deposits, NW Namibia,” Miner. Deposita 41, 671–690 (2006).CrossRefGoogle Scholar
  7. 7.
    A. Yu. Bychkov and S. S. Matveeva, “Thermodynamic Model of the Formation of Ore Bodies at the Akchatau Wolframite Greisen-Vein Deposit,” Geokhimiya, No. 9, 934–954 (2008) [Geochem. Int. 46, 867–886 (2008)].Google Scholar
  8. 8.
    A. M. Erokhin and T. M. Sushchevskaya, “Evolution of Physicochemical Mineral-Forming Medium during Formation of Tin Deposits,” Geokhimiya, No. 5, 660–671 (1992).Google Scholar
  9. 9.
    T. M. Sushchevskaya, “Mineral-Forming Fluids of the Iul’tin Deposit and Formation of Cassiterite-Wolframite Ores,” in Applied Geochemistry. Vol. 7. Book 1: Mineralogy and Geochemistry (IMGRE, Moscow, 2005), pp. 155–169. [in Russian].Google Scholar
  10. 10.
    B. N. Ryzhenko, N. I. Kovalenko, and Vikt. L. Barsukov, “The Model of Fluid-Forming Tin-bearing Greisens,” Geol. Rudn. Mestorozhd. 40(2), 114–123 (1998) [Geol. Ore Dep. 40, 100–108 (1998)].Google Scholar
  11. 11.
    Yu. V. Shvarov and E. Bastrakov, HCh: a Software Package for Geochemical Equilibrium Modelling. User’s Guide (Austral. Geol. Surv. Org, Canberra, 1999).Google Scholar
  12. 12.
    M. V. Borisov, “Geochemical and Thermodynamic Models of Vein Hydrothermal Ore Formation,” (Nauchnyi Mir, Moscow, 2000) [in Russian].Google Scholar
  13. 13.
    V. D. Kozlov, D. V. Dudkinskii, and Yu. K. Eliass, Geochemistry and Ore Potential of the Granitoids of Central Chukotka (Nauka, Moscow, 1995) [in Russian].Google Scholar
  14. 14.
    D. V. Grichuk, Thermodynamic Models of Submarine Hydrothermal Systems (Nauchnyi Mir, Moscow, 2000) [in Russian].Google Scholar
  15. 15.
    A. Yu. Bychkov, T. M. Sushchevskaya, S. S. Matveeva, and A. V. Ignat’ev, “Diverse Regimes of Heterogeneous Transport of Fluids in the Hydrothermal Systems,” in Proceedings of 9th International Conference “New Ideas in the Earth’s Science (MGGRU, Moscow, 2009), Vol. 3, p. 269 [in Russian].Google Scholar
  16. 16.
    T. M. Sushchevskaya and B. N. Ryzhenko, “Simulation of Mixing of Fluids from Different Sources during Cassiterite Deposition,” Geokhimiya, No. 2, 184–193 (2002) [Geochem. Int. 40, 155–163 (2002)].Google Scholar
  17. 17.
    S. F. Lugov, B. V. Makeev, A. B. Pavlovskii, et al., “Main Types of Tin-Bearing Districts,” (Nedra, Moscow, 1976) [in Russian].Google Scholar
  18. 18.
    H. Eugster, “Granites and Hydrothermal Ore Deposits. A Geochemical Framework,” Mineral. Mag. 49, 7–23 (1984).CrossRefGoogle Scholar
  19. 19.
    C. A. Heinrich and P. J. Eadington, “Thermodynamic Predictions of the Hydrothermal Chemistry of Arsenic and Their Significance for the Paragenetic Sequence of Some Cassiterite-Arsenopyrite Base Metal Sulfide Deposits,” Econ. Geol. 81, 511–529 (1986).CrossRefGoogle Scholar
  20. 20.
    T. M. Sushchevskaya, A. L. Devirts, E. P. Lagutina, and V. A. Kiryukhin, “Hydrogen Isotopic Composition of Water of Fluid Inclusions in Quartz in Relation with Studying the Genesis of Tin Mineralization,” Geokhimiya, No. 5, 737–742 (1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Geological FacultyMoscow State UniversityMoscowRussia

Personalised recommendations