Advertisement

Geochemistry International

, Volume 48, Issue 1, pp 15–40 | Cite as

The redox state of the continental lithospheric mantle of the Baikal-Mongolia region

  • L. P. Nikitina
  • A. G. Goncharov
  • A. K. Saltykova
  • M. S. Babushkina
Article

Abstract

The thermal and redox state of the upper mantle beneath the Baikal-Mongolia region was estimated on the basis of the investigation of the chemical composition (including iron oxidation state) of major minerals (olivine, orthopyroxene, clinopyroxene, and spinel) in spinel and garnet-spinel peridotite xenoliths from the Cenozoic alkali basalts of the volcanic fields of the Dariganga Plateau, Tariat Depression, and Vitim Plateau. At temperatures of 1030–1500°C and pressures of 29–47 kbar, the Δlog\( f_{O_2 } \) values relative to the FMQ buffer (calculated using the olivine-spinel oxygen barometer) range from −0.9 to −1.7 for the xenoliths of the Dariganga Plateau, from −0.9 to −1.8 for the Tariat Depression, and from −0.8 to −0.1 for the Vitim Plateau. The oxygen fugacity of peridotites from all of the areas is, in general, lower than that of the WM buffer. Oxygen fugacity is usually below the CCO and EMOD/G buffers in the peridotites of the Dariganga Plateau and the Tariat Depression and higher than these buffers in the peridotites of the Vitim Plateau. The T-PΔlog\( f_{O_2 } \) relationships in the xenoliths suggest the existence of spatial heterogeneity in the thermal and redox state of the upper mantle of the Baikal-Mongolia region. This heterogeneity is probably related to the influence of the plume that was responsible for the Late Mesozoic-Cenozoic intraplate magmatism of this region and reflects the different distance of the respective mantle domains from the plume head. The C-O-H fluids in equilibrium with the upper mantle peridotites are composed mainly of water and carbon dioxide. The mantle of the Dariganga Plateau and the Tariat Depression (Δlog\( f_{O_2 } \) < −0.9) is characterized by the dominance of H2O, whereas CO2-rich fluids are characteristic of the more oxidized mantle of the Vitim Plateau (Δlog\( f_{O_2 } \) is mostly higher than −0.8).

Keywords

Olivine Geochemistry International Oxygen Fugacity Mantle Peridotite Peridotite Xenolith 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Galimov, “Growth of the Earth’s Core as a Source of Its Internal Energy and a Factor of Mantle Redox Evolution,” Geokhimiya, No. 8, 755–758 (1998) [Geochem. Int. 36, 673–675 (1998)].Google Scholar
  2. 2.
    I. D. Ryabchikov, “Fluid Regime of the Earth’s Mantle,” in Problems of Global Geodynamics, Ed. by D. V. Rundkvist (GEOS, Moscow, 2000), pp. 195–203 [in Russian].Google Scholar
  3. 3.
    A. A. Kadik, “Lithospheric Fluids as Reflection of the Mantle Redox Regime: Implications for the Geophysical Properties of the Deep Matter,” in Deep Fluids and Geodynamics (Nauka, Moscow, 2003), pp. 19–45 [in Russian].Google Scholar
  4. 4.
    A. A. Kadik, “Mantle-Derived Reduced Fluids: Relationship to the Chemical Differentiation of Planetary Matter,” Geokhimiya, No. 9, 928–940 (2003) [Geochem. Int. 41, 844–855 (2003)].Google Scholar
  5. 5.
    A. A. Kadik, “Solubility of Hydrogen and Carbon in Reduced Magmas of the Early Earth’s Mantle,” Geokhimiya, No. 1, 63–79 (2006) [Geochem. Int. 44, 33–47 (2006)].Google Scholar
  6. 6.
    M. S. Babushkina, L. P. Nikitina, A. G. Goncharov, and N. I. Ponomareva, “Water in the Structure of Minerals of Mantle Peridotites: Relation with Thermal and Oxidation-Reduction Conditions in the Upper Mantle,” Zap. Vseross. Mineral O-va, No. 1, 3–19 (2009).Google Scholar
  7. 7.
    R. J. Arculus and J. W. Delano, “Intrinsic Oxygen Fugacity Measurements: Techniques and Results for Spinels from Upper Mantle Peridotites and Megacryst Assemblages,” Geochim. Cosmochim. Acta 45, 899–913 (1981).CrossRefGoogle Scholar
  8. 8.
    R. J. Arculus, J. B. Dawson, R. H. Mitchell, et al., “Oxidation State of the Upper Mantle Recorded by Megacryst Ilmenite in Kimberlite and Type A and B Spinel Lherzolites,” Contrib. Mineral. Petrol. 85, 85–94 (1984).CrossRefGoogle Scholar
  9. 9.
    G. C. Ulmer, D. E. Grandstaff, D. White, M. A. Moats, T. J. Buntin, D. P. Gold, C. J. Hatton, A. Kadik, R. A. Koseluk, and M. Rosenhauer, “The Mantle Redox State: An Unfinished Story?,” in Mantle Metasomatism and Alkaline Magmatism, Ed. by E. M. Morris and J. D. Pasteris, Geol. Soc. Am. Spec. Pap. 215, 5–23 (1987).Google Scholar
  10. 10.
    A. A. Kadik, E. V. Zharkova, V. I. Kovalenko, and D. A. Ionov, “Upper Mantle Redox Conditions: Experimental Determination of Oxygen Fugacity of Minerals from Peridotite Xenoliths of Shavaryn-Tsaram Volcano (Mongolia),” Geokhimiya, No. 6, 783–793 (1988).Google Scholar
  11. 11.
    A. A. Kadik, E. V. Zharkova, E. S. Efimova, and N. V. Sobolev, “Electrochemical Determinations of Intrinsic Oxygen Fugacity of Diamond Crystals,” Dokl. Akad. Nauk 328(3), 386–389 (1993).Google Scholar
  12. 12.
    A. A. Kadik, E. V. Zharkova, and A. I. Kiselev, “Redox State of Spinel and Garnet Lherzolites,” Dokl. Akad. Nauk 337(3), 100–103 (1994).Google Scholar
  13. 13.
    A. A. Kadik, E. V. Zharkova, V. S. Lutkov, and G. T. Tadzhibaev, “Redox State of Mantle Xenoliths from the Southern and Central Tien Shan,” Geokhimiya, No. 8, 135–140 (1995).Google Scholar
  14. 14.
    B. J. Wood and D. Virgo, “Upper Mantle Oxidation State: Ferric Iron Contents of Lherzolite Spinels by 57Fe Mossbauer Spectroscopy and Resultant Oxygen Fugacities,” Geochim. Cosmochim. Acta 53, 1277–1299 (1989).CrossRefGoogle Scholar
  15. 15.
    S. L. Votyakov, I. S. Chashchukhin, S. G. Uimin, and V. N. Bykov, “Oxygen Thermometry and Barometry of Chromite-Bearing Ultramafic Rocks, Examples from the South Urals: I. Mössbauer Spectroscopy of Chrome Spinels and the Problems of Olivine-Spinel Thermometry,” Geokhimiya, No. 8, 791–802 (1998) [Geochem. Int. 36, (1998)].Google Scholar
  16. 16.
    V. V. Yarmolyuk, V. I. Kovalenko, and V. G. Ivanov, “Intraplate Late Mesozoic-Cenozoic Volcanic Province of Central-East Asia-Projection of a Mantle Hot Field,” Geotektonika, No. 5, 41–67 (1995).Google Scholar
  17. 17.
    V. V. Yarmolyuk, V. G. Ivanov, V. I. Kovalenko, and B. G. Pokrovskii, “Magmatism and Geodynamics of the Southern Baikal Volcanic Region (Mantle Hot Spot): Results of Geochronological, Geochemical, and Isotopic (Sr, Nd, and O) Investigations,” Petrologiya 11(1), 3–34 (2003) [Petrology 11, 1–30 (2003)].Google Scholar
  18. 18.
    V. I. Kovalenko, V. V. Yarmolyuk, V. P. Kovach, S. V. Budnikov, D. Z. Zhuravlev, I. K. Kozakov, A. B. Kotov, E. Yu. Rytsk, and E. B. Sal’nikova, “Magmatism as Factor of Crust Evolution in the Central Asian Foldbelt: Sm-Nd Isotopic Data,” Geotektonika, No. 3, 21–42 (1999) [Geotectonics 33, 191–208 (1999)].Google Scholar
  19. 19.
    V. A. Glebovitsky, L. P. Nikitina, V. Ya. Khiltova, and N. O. Ovchinnikov, “The Thermal Regimes of the Upper Mantle beneath Precambrian and Phanerozoic Structures up to the Thermobarometry Data of Mantle Xenoliths,” Lithos 74, 1–26 (2004).CrossRefGoogle Scholar
  20. 20.
    S. S. Harley, “The Solubility of Alumina in Orthopyroxene Coexisting with Garnet in FeO-MgO-Al2O3-SiO2 and CaO-FeO-MgO-Al2O3-SiO2 Systems,” J. Petrol. 25, 665–696 (1984).Google Scholar
  21. 21.
    G. P. Brey, A. M. Doroshev, A. V. Girnis, and A. I. Turkin, “Garnet-Spinel-Orthopyroxene Equilibria in the FeO-MgO-Al2O3-SiO2-Cr2O3 System: I. Composition and Molar Volumes of Minerals,” Eur. J. Mineral. 11, 599–617 (1999).Google Scholar
  22. 22.
    A. V. Girnis and G. P. Brey, “Garnet-Spinel-Orthopyroxene Equilibria in the FeO-MgO-Al2O3-SiO2Cr2O3 System: II Thermodynamic Analysis,” Eur. J. Mineral. 11, 619–636 (1999).Google Scholar
  23. 23.
    S. Klemme and H. S. O’Neill, “The Effect of Cr on the Solubility of Al in Orthopyroxene: Experiments and Thermodynamic Modeling,” Contrib. Mineral. Petrol. 140, 84–98 (2000).CrossRefGoogle Scholar
  24. 24.
    A. V. Girnis, G. P. Brey, A. M. Doroshev, et al., “The System MgO-Al2O3-SiO2-Cr2O3 Revisited: Reanalysis of Doroshev et al.’s (1997) Experiments and New Experiments,” Eur. J. Mineral. 15, 953–964 (2003).CrossRefGoogle Scholar
  25. 25.
    L. P. Nikitina and M. V. Ivanov, Geological Thermobarometry Based on Mineral Formation Reactions with Variable Composition Phases (Nedra, St. Petersburg, 1992) [in Russian].Google Scholar
  26. 26.
    H. Palme and H. St. C. O’Neill, “Cosmochemical Estimates of Mantle Composition,” Treatise on Geochemistry 2, 1–38 (2003).CrossRefGoogle Scholar
  27. 27.
    N. O. Ovchinnikov, “Mossbauer Studies of Silicates and Germanates of Olivine Structure,” in Applications of the Mossbauer Effect (London, 1985), Vol. 5, pp. 1751–1755.Google Scholar
  28. 28.
    L. M. Krizhanskii, L. P. Nikitina, K. K. Khristoforov, and S. P. Ekimov, “Fe2+ Distribution and Geometry of Cation-Oxygen Polyhedrons in the Structures of Orthopyroxenes at Different Temperatures: Evidence from Mossbauer Data,” Geokhimiya, No. 1, 69–79 (1974).Google Scholar
  29. 29.
    L. P. Nikitina, S. P. Ekimov, A. V. Maslenikov, et al., Cation Distribution and Thermodynamics of Fe-Mg Solid Solutions (Nauka, Leningrad, 1978) [in Russian].Google Scholar
  30. 30.
    L. P. Nikitina, S. P. Ekimov, L. M. Krizhanskii, and K. K. Khristoforov, “Cation Ordering in the Structures of High-Alumina Orthopyroxenes,” Mineral. Sb., No. 1, 18–22 (1976).Google Scholar
  31. 31.
    A. G. Goncharov, “The Degree of Oxidation and Distribution of Iron in the Structure of Orthopyroxenes from Mantle Peridotite Xenoliths: Evidence from Mossbauer Spectroscopy,” in Proceedings of 18th Youth Conference in Memory of K.O. Krats, St. Petersburg, Russia, 2007 (St. Petersburg, 2007), pp. 133–135 [in Russian].Google Scholar
  32. 32.
    S. P. Ekimov, L. M. Krizhanskii, and K. K. Khristoforov, “Character of Mossbauer Spectra and Structural Peculiarity of Natural Clinopyroxenes,” Geokhimiya, No. 5, 761–767 (1973).Google Scholar
  33. 33.
    S. S. Matsyuk, A. N. Platonov, E. V. Pol’shin, et al., Spinellides in Mantle Rocks (Naukova Dumka, Kiev, 1989) [in Russian].Google Scholar
  34. 34.
    B. J. Wood, “An Experimental Test of the Spinel Peridotite Oxygen Barometer,” Geol. Soc. Am. Bull. 97, 15845–15851 (1990).Google Scholar
  35. 35.
    C. Ballhaus, R. F. Berry, and D. H. Green, “High Pressure Experimental Calibration of the Olivine-Orthopyroxene-Spinel Oxygen Geobarometer: Implications for the Oxidation State of the Upper Mantle,” Contrib. Mineral. Petrol. 107, 27–40 (1991).CrossRefGoogle Scholar
  36. 36.
    W. R. Taylor, M. Kamperman, and R. Hamilton, “New Thermobarometer and Oxygen Fugacity Sensor Calibrations for Ilmeniteand Chromian Spinel-Bearing Peridotitic Assemblages,” in Proceedings of 7th International Kimberlite Conference, Cape Town, South Africa, 1998 (Red Roof Design, Cape Town, 1998), pp. 891–892.Google Scholar
  37. 37.
    B. J. Wood and S. Banno, “Garnet-Orthopyroxene and Orthopyroxene-Clinopyroxene Relationships in Simple and Complex System,” Contrib. Mineral. Petrol. 42, 109–1024 (1973).CrossRefGoogle Scholar
  38. 38.
    J. Nell and B. J. Wood, “High Temperature Electrical Measurements and Thermodynamic Properties of Fe3O4-FeCr2O4-MgCr2O4-FeAl2O4 Spinels,” Am. Mineral. 76, 405–426 (1991).Google Scholar
  39. 39.
    H. St. C. O’Neill, “Quartz-Fayalite-Iron and Quartz-Fayalite-Magnetite Equilibria and the Free Energy of Formation of Fayalite (Fe2SiO4) and Magnetite (Fe3O4),” Am. Mineral. 72, 67–75 (1987).Google Scholar
  40. 40.
    D. H. Eggler and D. R. Baker, “Reduced Volatiles in the System C-O-H: Implications to the Mantle Melting, Fluid Formation, and Diamond Genesis,” in High Pressure Research in Geophysics, AEPS. Vol. 12, Ed. by S. Akimoto and M. H. Manghanani (Center Acad. Publ. Japan, Tokio, 1982), pp. 237–250.Google Scholar
  41. 41.
    J. A. D. Connoly, “Phase Diagram Methods for Graphitic Rocks and Application to the System C-O-HFeO-TiO2-SiO2,” Contrib. Mineral. Petrol. 119, 94–116 (1995).CrossRefGoogle Scholar
  42. 42.
    G. S. Mattioli, M. B. Baker, M. J. Rutter, and E. M. Stolper, “Upper Mantle Oxygen Fugacity and Its Relationship to Metasomatism,” J. Geol. 97(5), 521–536 (1989).CrossRefGoogle Scholar
  43. 43.
    D. A. Ionov and B. G. Wood, “The Oxidation State of Subcontinental Mantle: Oxygen Thermobarometry of Mantle Xenoliths from Central Asia,” Contrib. Mineral. Petrol. 111, 179–193 (1992).CrossRefGoogle Scholar
  44. 44.
    R. W. Luth, D. Virgo, F. R. Boyd, and B. J. Wood, “Ferric Iron in Mantle-Derived Garnets,” Contrib. Mineral. Petrol. 104, 56–72 (1990).CrossRefGoogle Scholar
  45. 45.
    P. R. A. Wells, “Pyroxene Thermometry in Simple and Complex Systems,” Contrib. Mineral. Petrol. 62, 129–139 (1977).CrossRefGoogle Scholar
  46. 46.
    J. D. McGregor, “The System MgO-Al2O3-SiO2: Solubility of Al2O3 in Enstatite for Spinel and Garnet Peridotite Compositions,” Am. Mineral. 59, 110–119 (1974).Google Scholar
  47. 47.
    A. A. Finnerty and F. R. Boyd, “Thermobarometry for Garnet Peridotite Xenoliths: A Basis for Upper Mantle Stratigraphy,” in Mantle Xenoliths, Ed. by P. H. Nixon (Willey, New York, 1987), pp. 381–402.Google Scholar
  48. 48.
    G. Gudmundsson and B. J. Wood, “Experimental Tests of Garnet Peridotite Oxygen Barometry,” Contrib. Mineral. Petrol. 119, 56–67 (1995).CrossRefGoogle Scholar
  49. 49.
    D. A. Carswell and F. G. F. Gibb, “Geothermometry of Garnet Lherzolite Nodules with Special Reference to Those from the Kimberlites of Northern Lesotho,” Contrib. Mineral. Petrol. 74, 403–416 (1980).Google Scholar
  50. 50.
    D. A. Carswell and F. G. F. Gibb, “Evaluation on Mineral Thermometers and Barometers Applicable to Garnet Lherzolite Assemblages,” Contrib. Mineral. Petrol. 95, 499–511 (1987).CrossRefGoogle Scholar
  51. 51.
    D. A. Carswell, “The Garnet-Orthopyroxene Al-Barometer Problematic Application to Natural Garnet Lherzolite Assemblages,” Mineral. Mag. 55, 19–31 (1991).CrossRefGoogle Scholar
  52. 52.
    V. I. Fonarev and A. A. Grafchikov, “Two-Pyroxene Geothermometry (Critical Analysis),” in Sketches on Physicochemical Petrology (Nauka, Moscow, 1987), Issue 14, pp. 118–135 [in Russian].Google Scholar
  53. 53.
    P. Nimis and W. R. Taylor, “Single Clinopyroxene Thermobarometry for Garnet Peridotites. Part 1. Calibration and Testing of a Cr-in-Cpx Barometer and Enstatite-in-Cpx Thermometer,” Contrib. Mineral. Petrol. 139, 541–554 (2000).CrossRefGoogle Scholar
  54. 54.
    B. J. Wood, “Solubility of Alumina in Orthopyroxene Coexisting with Garnet,” Contrib. Mineral. Petrol. 46, 1–15 (1974).CrossRefGoogle Scholar
  55. 55.
    S. S. Harley, “The Solubility of Alumina in Orthopyroxene Coexisting with Garnet in FeO-MgO-Al2O3-SiO2 and CaO-FeO-MgO-Al2O3-SiO2 Systems,” J. Petrol. 25, 665–696 (1984).Google Scholar
  56. 56.
    K. G. Nickel and D. H. Green, “Empirical Geothermobarometry for Garnet Peridotites and Implications for the Nature of the Lithosphere, Kimberlits and Diamonds,” Earth Planet. Sci. Lett. 73, 158–170 (1985).CrossRefGoogle Scholar
  57. 57.
    K. G. Nickel, “Garnet-Pyroxene Equilibria in the System SMACCR (SiO2-MgO-Al2O3-CaO-Cr2O3): the Cr-Barometer,” in Kimberlites and Related Rocks, Geol. Soc. Am. Spec. Publ. 14, 901–921 (1989).Google Scholar
  58. 58.
    G. P. Brey and T. Kohler, “Geothermometry in FourPhase Lherzolites II. New Thermobarometers and Practical Assessment of Existing Thermobarometers,” J. Petrol. 31, 1353–1378 (1990).Google Scholar
  59. 59.
    A. A. Finnerty and F. R. Boyd, “Evaluation of Thermobarometers for Garnet Peridotites,” Geochim. Cosmochim. Acta 48, 15–27 (1984).CrossRefGoogle Scholar
  60. 60.
    D. H. Lindsley and S. A. Dixon, “Diopside-Enstatite Equilibria at 850 to 1400°C, 5 to 35 Kbars,” Am. J. Sci. 276, 1285–1301 (1976).Google Scholar
  61. 61.
    D. J. Ellis and D. H. Green, “An Experimental Study of the Effect of Ca upon Garnet-Clinopyroxene Fe-Mg Exchange Equilibrium,” Contrib. Mineral. Petrol. 71, 13–22 (1979).CrossRefGoogle Scholar
  62. 62.
    R. Powell, “Regression Diagnostics and Robust Regression in Geothermometer/Geobarometer Calibration: The Garnet-Clinopyroxene Geothermometer Revisited,” J. Metamorph. Geol. 3, 231–243 (1985).CrossRefGoogle Scholar
  63. 63.
    P. Bertrand and J.-C. C. Mercier, “The Mutual Solubility Orthoand Clinopyroxene: Toward an Absolute Geothermometer for the Natural System?,” Earth Planet. Sci. Lett. 77, 109–122 (1986).Google Scholar
  64. 64.
    X. Xu, S. Y. O’ Reilly, X. Zhou, and W. L. Griffin, “A Xenolith-Derived Geotherm and the Crust-Mantle Boundary at Qilin Southeastern China,” Lithos 38, 41–62 (1996).CrossRefGoogle Scholar
  65. 65.
    Y. Xu, C. Lin, and L. Shi, “The Geotherm of the Lithosphere beneath Qilin, SE China: A Re-Appraisal and Implications for P-T Estimation of Fe-Rich Pyroxenites,” Lithos 47, 181–194 (1999).CrossRefGoogle Scholar
  66. 66.
    L. Ya. Aranovich, Mineral Equilibria in Multicomponent Solid Solutions (Nauka, Moscow, 1991) [in Russian].Google Scholar
  67. 67.
    O. V. Avchenko and V. V. Naumova, “Garnet-Orthopyroxene Geobarometry,” Geol. Geofiz., No. 1, 79–86 (1992).Google Scholar
  68. 68.
    L. P. Nikitina, “Garnet-Orthopyroxene and GarnetClinopyroxene Thermobarometers for Mantle Xenoliths,” in Theophrastus Contributions to Advances Studies in Geology: Capricious Earth Models and Modeling of Geologic Processes and Objects, Ed. by V. A. Glebovitsky and V. N. Dech (St. Petersburg-Athens, 2000), Vol. 3, pp. 44–55.Google Scholar
  69. 69.
    F. R. Bundy, H. P. Bovenkerk, H. M. Strong, and R. H. Wentorf, Jr. “Diamond-Graphite Equilibrium Line from Growth and Graphitization of Diamond,” J. Chem. Phys. 35, 383–391 (1961).CrossRefGoogle Scholar
  70. 70.
    N. V. Sobolev, B. A. Fursenko, S. V. Goryainov, J. Shu, R. J. Hemley, Mao Ho-Kwang, and F. R. Boyd, “Fossilized High Pressure from the Earth’s Deep Interior: The Coesite-in-Diamond Barometer,” Proc. Nat. Acad. Sci. USA 97(22), 11875–11879 (2000).CrossRefGoogle Scholar
  71. 71.
    N. V. Sobolev, A. I. Botkunov, Yu. G. Lavrent’ev, and L. V. Usova, “New Data on the Composition of Minerals Associated with Diamonds from the Mir Kimberlite Pipe,” Geol. Geofiz., No. 12, 3–14 (1976).Google Scholar
  72. 72.
    N. V. Sobolev, N. P. Pokhilenko, and E. S. Efimova, “Xenoliths of Diamond-Bearing Peridotites in Kimberlites and the Origin of Diamonds,” Geol. Geofiz., No. 25, 63–80 (1984).Google Scholar
  73. 73.
    N. V. Sobolev, F. V. Kaminsky, W. L. Griffin, et al., “Mineral Inclusions in Diamonds from the Sputnik Kimberlite Pipe,” Lithos 39, 135–157 (1997).CrossRefGoogle Scholar
  74. 74.
    J. J. Gurney, J. W. Harris, and R. S. Rickard, “Silicate and Oxide Inclusions in Diamonds from the Finsch Kimberlite Pipes,” in Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology, and Geochemistry. Proceedings of 2nd International Kimberlite Conference, Ed. by F. R. Boyd and H. O. A. Meyer (Am. Geophys. Union, Washington, 1979), Vol. 1, pp. 1–15.Google Scholar
  75. 75.
    R. S. Rickard, J. W. Harris, J. J. Gurney, and P. Cardoso, “Minerals in Diamonds from Koffiefontein Mine,” in Kimberlites and Related Rocks. Vol. 2. Proceedings of 4th International Kimberlite Conference, Ed. by J. Ross et al. Geol. Soc. Am. Spec. Publ. 14, 1054–1062 (1989).Google Scholar
  76. 76.
    H. Tsai, H. O. A. Meyer, J. Morea, and H. J. Milledge, “Mineral Inclusions in Diamond: Premier, Jagersfontein and Finsch Kimberlites, South Africa, and Williamson Mine, Tanzania,” in Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology, and Geochemistry. Proceedings of 2nd International Kimberlite Conference Ed. by F. R. Boyd and H. O. A. Meyer (Am. Geophys. Union, Washington, 1979), Vol. 1, pp. 16–27.Google Scholar
  77. 77.
    A. V. Girnis, T. Stachel, G. P. Brey, et al., “Internally Consistent Geothermobarometers for Garnet Harzburgites: Model Refinement and Application,” in Proceedings of 7th International Kimberlite Conference, Cape Town, South Africa, 1998 (Red Roof Design, Cape Town, 1999), Vol. 1, pp. 247–254 (1999).Google Scholar
  78. 78.
    U. Wiechert, D. A. Ionov, and K. H. Wedepohl, “Spinel Peridotite Xenoliths from Atsagin-Dush Volcano, Dariganga Lava Plateau, Mongolia: A Record of Partial Melting and Cryptic Metasomatism in the Upper Mantle,” Contrib. Mineral. Petrol. 126, 345–364 (1997).CrossRefGoogle Scholar
  79. 79.
    M. G. Kopylova and Yu. S. Genshaft, “Petrology of Garnet-Spinel Peridotites in Cenozoic Basalts,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 5, 36–56 (1991).Google Scholar
  80. 80.
    M. G. Kopylova, S. Y. O’Reilly, and Yu. S. Genschaft, “Thermal State of the Lithosphere beneath Central Mongolia: Evidence from Deep-Seated Xenoliths from the Shavaryn-Saram Volcanic Centre in the Tariat Depression, Hangai, Mongolia,” Lithos 36, 243–255 (1995).CrossRefGoogle Scholar
  81. 81.
    D. A. Ionov, W. L. Griffin, and S. Y. O’Reilly, “Off-Cratonic Garnet and Spinel Peridotite Xenoliths from DsunBussular, SE Mongolia,” in Proceedings of 8th International Kimberltie Conference, Cape Town, South Africa, 1998. (Red Roof Design, Cape Town, 1999), Vol. 1, 383–390 (1999).Google Scholar
  82. 82.
    S. M. Glazer, S. F. Foley, and D. Gutner, “Trace Element Compositions of Minerals in Garnet and Spinel Peridotite Xenoliths from the Vitim Volcanic Field, Transbaikalia, Eastern Siberia,” Lithos 48, 263–286 (1999).CrossRefGoogle Scholar
  83. 83.
    M. A. Menzies and G. Chazot, “Fluid Processes in Diamond to Spinel Facies Shallow Mantle,” J. Geodynamics 20, 387–415 (1995).CrossRefGoogle Scholar
  84. 84.
    J. A. C. Robinson and B. J. Wood, “The Depth of the Spinel to Garnet Transition at Peridotite Solidus,” Earth Planet, Sci. Lett. 164(1), 277–284 (1998).CrossRefGoogle Scholar
  85. 85.
    M. Walter, T. Katsura, A. Kubo, et al., “Spinel-Garnet Lherzolite Transition in the System CaO-MgO-Al2O3SiO2 Revisited: An in Situ X-Ray Study,” Geochim. Cosmochim Acta 66, 2109–2161 (2002).CrossRefGoogle Scholar
  86. 86.
    B. J. Wood, “An Experimental Test of the Spinel Peridotite Oxygen Barometer,” J. Petrol. 95(B10), 15845–15851 (1990).Google Scholar
  87. 87.
    S. Klemme, “The Influence of Cr on the Garnet-Spinel Transition in the Earth’s Mantle: Experiments in the System MgO-Cr2O3-SiO2 and Thermodynamic Modeling,” Lithos 77, 639–646 (2004).CrossRefGoogle Scholar
  88. 88.
    T. Gasparik, “An Internally Consistent Thermodynamic Model for the System CaO-MgO-Al2O3-SiO2 Derived Primarily from Phase Equilibrium,” J. Geol. 108, 103–119 (2000).CrossRefGoogle Scholar
  89. 89.
    H. St. C. O’Neill, “The Transition between Spinel Lherzolite and Garnet Lherzolite, and Its Use as a Geobarometer,” Contrib. Mineral. Petrol. 77, 185–194 (1981).CrossRefGoogle Scholar
  90. 90.
    S. Klemme, T. J. Ivanic, J. A. D. Connolly, and B. Harte, “Thermodynamic Modeling of Cr-Bearing Garnets and Spinels in Diamonds and Peridotite Xenoliths,” in Proceedings of 9th International Kimberlite Conference, Frankfurt, Germany, 2008 (Goethe-University, Frankfurt, 2008), A–00097.Google Scholar
  91. 91.
    BenXun Su, “Natural Evidence for Garnet-Spinel Transition (GST) in the Earth’s Mantle,” Nature Precedings: doi: 10.1038/npre.2008.1898.2.Google Scholar
  92. 92.
    B. J. Wood, T. Bryndzia, and K. E. Johnson, “Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation,” Science 248, 337–344 (1990).CrossRefGoogle Scholar
  93. 93.
    S. E. Haggerty and L. A. Tompkins, “Redox State of the Earth’s Upper Mantle from Kimberlite Ilmenites,” Nature 303, 295–300 (1983).CrossRefGoogle Scholar
  94. 94.
    C. Ballhaus, “Redox State of Lithospheric and Asthenospheric Upper Mantle,” Contrib. Mineral. Petrol. 114, 331–348 (1993).CrossRefGoogle Scholar
  95. 95.
    D. J. Frost and C. A. McCammon, “The Redox State of Earth’s Mantle,” An. Rev. Earth Planet. Sci. 36, 389–420 (2008).CrossRefGoogle Scholar
  96. 96.
    W. R. Taylor and D. H. Green, “Measurement of Reduced Peridotite-C-O-H Solidus and Implications for Redox Melting of the Mantle,” Nature 332, 349–352 (1987).CrossRefGoogle Scholar
  97. 97.
    A. B. Woodland and M. Koch, “Variation in Oxygen Fugacity with Depth in the Upper Mantle,” Earth Planet. Sci. Lett. 214, 295–310 (2003).CrossRefGoogle Scholar
  98. 98.
    S. K. Simakov, Physicochemical Conditions of Formation of Diamondiferous Parageneses of Eclogites in the Upper Mantle Rocks (Magadan, 2003) [in Russian].Google Scholar
  99. 99.
    C. A. McCammon and M. G. Kopylova, “A Redox Profile of the Slave Mantle and Oxygen Fugacity Control in the Cratonic Mantle,” Contrib. Mineral. Petrol. 148, 55–68 (2004).CrossRefGoogle Scholar
  100. 100.
    V. V. Yarmolyuk, V. I. Kovalenko, A. M. Kozlovskii, et al., “Late Paleozoic-Early Mesozoic Rift System of Central Asia: Composition and Sources of Magmatism, Regularities of Formation and Geodynamics,” in Tectonic Problems of Central Asia, Ed. by M. G. Leonov (GEOS, Moscow, 2005), pp. 197–236 [in Russian].Google Scholar
  101. 101.
    A. F. Grachev, “Khamar-Daban-A Hot Spot of the Baikal Rift: Data of Chemical Geodynamics,” Fiz. Zemli, No. 3, 3–28 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • L. P. Nikitina
    • 1
  • A. G. Goncharov
    • 1
  • A. K. Saltykova
    • 2
  • M. S. Babushkina
    • 1
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Karpinskii All-Russia Research Institute of GeologySt. PetersburgRussia

Personalised recommendations