Advertisement

Geochemistry International

, Volume 46, Issue 10, pp 985–995 | Cite as

Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal

  • A. A. Krylov
  • O. M. Khlystov
  • T. I. Zemskaya
  • H. Minami
  • A. Hachikubo
  • H. Shoji
  • M. Kida
  • T. P. Pogodaeva
  • L. Naudts
  • J. Poort
Article

Abstract

This paper presents data on authigenic siderite first found in surface sediments from mud volcanoes in the Central (K-2) and Southern (Malen’kii) basins of Lake Baikal. Ca is the predominant cation, which substitutes Fe in the crystalline lattice of siderite. The enrichment of the carbonates in the 13C isotope (from +3.3 to +6.8‰ for the Malen’kii volcano and from +17.7 to +21.9‰ for K-2) results from the crystallization of the carbonates during methane generation via the bacterial destruction of organic matter (acetate). The overall depletion of the carbonates in 18O is mainly inherited from the isotopic composition of Baikal water.

Keywords

Isotopic Composition Pore Water Bottom Sediment Geochemistry International Accretionary Wedge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Khatchinson, A. Yu. Gol’mshtok, L. P. Zonenshain, et al., “Features of Structure of the Sedimentary Sequence of Lake Baikal Based on the Results of a Multifrequency Seismic Survey (1989),” Geol. Geofiz. 34(10–11), 25–36 (1993).Google Scholar
  2. 2.
    A. G. Efremova, M. V. Andreeva, T. V. Levshenko, et al., “On Gases in the Baikal Sediments,” Gazov. Promyshlen. Ser. Geol. Razvedka Gaz. Kondens. Mestorozhd., No. 2, 15–27 (1980).Google Scholar
  3. 3.
    D. R. Hutchinson, M. W. Lee, W. F. Agena, et al., “Processing of Lake Baikal Marine Multichannel Seismic Reflection Data,” USGS Open-File Rept., No. 93-201, 1–24 (1992).Google Scholar
  4. 4.
    M. I. Kuz’min, G. V. Kalmychkov, V. A. Geletii, et al., “The First Find of Gas-Hydrates in the Sedimentary Rocks of Lake Baikal,” Dokl. Akad. Nauk 362, 541–543(1998) [Dokl. Earth Sci. 362, 1029–1031 (1998)].Google Scholar
  5. 5.
    M. Vanneste, M. De Batist, A. Golmshtok, et al., “Multifrequency Seismic Study of Gas Hydrate-Bearing Sediments in Lake Baikal, Siberia,” Mar. Geol. 172, 1–21(2001).CrossRefGoogle Scholar
  6. 6.
    P. van Rensbergen, M. De Batist, J. Klerkx, et al., “Sublacustrine Mud Volcanoes and Methane Seeps Caused by Dissociation of Gas Hydrates in Lake Baikal,” Geology 30, 631–634 (2002).CrossRefGoogle Scholar
  7. 7.
    O. M. Khlystov, J. Klerkx, and M. de Batist, “Bottom Sediments Containing Subsurface Gas Hydrates in Lake Baikal,” in Proceedings of 3rd Vereshchagin Baikal Conference, Irkutsk, Russia, 2000 (Irkutsk, 2000), p. 258 [in Russian].Google Scholar
  8. 8.
    J. Klerkx, T. I. Zemskaya, T. V. Matveeva, et al., “Methane Hydrates in Deep Bottom Sediments of Lake Baikal,” Dokl. Akad. Nauk 393, 822–826 (2003) [Dokl. Earth Sci. 393, 1342–1346 (2003)].Google Scholar
  9. 9.
    T. V. Matveeva, L. L. Mazurenko, V. A. Soloviev, et al., “Gas Hydrate Accumulation in the Subsurface Sediments of Lake Baikal (Eastern Siberia),” Geo-Mar. Lett. 23, 289–299 (2003).CrossRefGoogle Scholar
  10. 10.
    O. M. Khlystov, O. V. Shubenkova, S. M. Chernitsyna, et al., “Geological and Biogeochemical Study of Baikal Sediments at a Methane Discharge Site,” in Proceedings of Lavrent’ev Conference of Young Scientists, Novosibirsk, Russia, 2003 (Novosibirsk, 2003), pp. 209–214 [in Russian].Google Scholar
  11. 11.
    O. M. Khlystov, “New Finds of Gas Hydrates in the Bottom Sediments of Lake Baikal,” Geol. Geofiz. 47, 979–981 (2006).Google Scholar
  12. 12.
    A. Yu. Lein, “Authigenic Carbonate Formation in the Ocean,” Lithol. Mineral Resour. 39, 1–30 (2004).CrossRefGoogle Scholar
  13. 13.
    J. B. Martin, M. Kastner, P. Henry, et al., “Chemical and Isotopic Evidence for Sources of Fluids in a Mud Volcano Field Seaward of the Barbados Accretionary Wedge,” J. Geophys. Res. 101, 20325–20345 (1996).CrossRefGoogle Scholar
  14. 14.
    U. von Rad, H. Rosch, H. Berner, et al., “Authigenic Carbonates Derived from Oxidized Methane Vented from the Makran Accretionary Prism Off Pakistan,” Mar. Geol. 136, 55–77 (1996).CrossRefGoogle Scholar
  15. 15.
    L. M. Knyazeva, “Vivianite in Bottom Mud from Lake Baikal,” Dokl. Akad. Nauk SSSR 97, 519–522 (1964).Google Scholar
  16. 16.
    K. K. Falkner, C. I. Measures, S. E. Herbelin, and J. M. Edmond, “The Major and Minor Element Geochemistry of Lake Baikal,” Limnol. Oceanogr. 36, 413–423 (1991).CrossRefGoogle Scholar
  17. 17.
    E. Callender and L. Granina, “Transition Metal Geochemistry of Sedimentary Pore Fluids Associated with Hydrothermal Activity in Lake Baikal, Russia,” in Proceedings of 7th Int. Conference on Water-Rock Inter action, WRI-7 Park City Utah, United States, 1992, (Balkema, Rotterdam, 1992), pp. 621–626.Google Scholar
  18. 18.
    I. B. Mizandrontsev, “On the Geochemistry of Ground Solutions,” in Dynamics of the Baikal Basin (Nauka. Sib. Otd., Novosibirsk, 1975), pp. 203–231 [in Russian].Google Scholar
  19. 19.
    The Baikal Drilling Project Group, “Late Cenozoic Paleoclimatic Record in the Lake Baikal Sediments Based on the Results of a 600-m Deep Drilling Core,” Geol. Geofiz. 41, 3–32 (2000).Google Scholar
  20. 20.
    T. Sapota, A. Aldahan, and I. S. Al-Aasm, “Sedimentary Facies and Climate Control on Formation of Vivianite and Siderite Microconcretions in Sediments of Lake Baikal, Siberia,” J. Paleolimnol. 36, 245–257 (2006).CrossRefGoogle Scholar
  21. 21.
    S. Das Sharma, D. J. Patil, and K. Gopalan, “Temperature Dependence of Isotopic Fractionation of CO2 from Magnesite-Phosphoric Acid Reaction,” Geochim. Cosmochim. Acta 66, 589–593 (2002).CrossRefGoogle Scholar
  22. 22.
    J. Rosenbaum and S. M. F. Sheppard, “An Isotopic Study of Siderites, Dolomites and Ankerites at High Temperatures,” Geochim. Cosmochim. Acta 50, 1147–1150(1986).CrossRefGoogle Scholar
  23. 23.
    M. Kida, O. Khlystov, T. Zemskaya, et al., “Coexistence of Structure I and II Gas Hydrates in Lake Baikal Suggesting Gas Sources from Microbial and Thermogenic Origin,” Geophys. Res. Lett. 33, L24603 (2006).Google Scholar
  24. 24.
    G. V. Kalmychkov, A. V. Egorov, M. I. Kuz’min, and O. M. Khlystov, “Genetic Types of Methane from Lake Baikal,” Dokl. Earth Sci. 411, 1462–1465 (2006).CrossRefGoogle Scholar
  25. 25.
    M. Kida, Crystallographic Studies on Synthetic and Natural Gas Hydrates by 13C NMR Technique Ph.D. Thesis (Kitami Institute of Technology, 2007) [in Japanese].Google Scholar
  26. 26.
    M. J. Whiticar, “Carbon and Hydrogen Isotope Systematics of Bacterial Formation and Oxidation of Methane,” Chem. Geol. 161, 291–314 (1999).CrossRefGoogle Scholar
  27. 27.
    L. Z. Granina, E. Callender, I. S. Lomonosov, et al., “Compositional Anomaly of Pore Waters in Baikal Bottom Sediments,” Geol. Geofiz. 42, 362–372 (2001).Google Scholar
  28. 28.
    D. L. Parkhurst and C. A. J. Appelo, “User’s Guide to PHREEQC (Version 2)—A computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations,” Water Res. Investigations Rept. No. 99-4259 (Denver, Colorado, 1999).Google Scholar
  29. 29.
    R. G. Deike, L. Granina, E. Callender, and J. J. McGee, “Formation of Ferric Iron Crusts in Quaternary Sediments of Lake Baikal, Russia, and Implication for Paleoclimate,” Mar. Geol. 139, 21–46 (1997).CrossRefGoogle Scholar
  30. 30.
    L. Granina, B. Muller, and B. Wehrli, “Origin and Dynamic of Fe and Mn Sedimentary Layers in Lake Baikal,” Chem. Geol. 205, 55–72 (2004).CrossRefGoogle Scholar
  31. 31.
    W. Davison, “Iron and Manganese in Lakes,” Earth-Science Rev. 34, 119–163 (1993).CrossRefGoogle Scholar
  32. 32.
    J. A. Robbins and E. Callender, “Diagenesis of Manganese in Lake Michigan Sediments,” Am. J. Sci. 275,512–533 (1975).Google Scholar
  33. 33.
    R. Matsumoto, “Isotopically Heavy Oxygen-Containing Siderite Derived from the Decomposition of Methane Hydrate,” Geology 17, 707–710 (1989).CrossRefGoogle Scholar
  34. 34.
    A. Kopf, J. C. Sample, P. Bauer, et al., “Diagenetic Carbonates from Cascadia Margin: Textures, Chemical Composition, and Oxygen and Carbon Stable Isotope Signatures,” Proc. ODP, Sci. Res. 146(1), 117–136 (1995).Google Scholar
  35. 35.
    J. C. Sample and A. Kopf, “Isotope Geochemistry of Syntectonic Carbonate Cements and Veins from the Oregon Margin: Implication for the Hydrogeologic Evolution of the Accretionary Wedge,” Proc. ODP, Sci. Res. 146(1), 137–147 (1995).Google Scholar
  36. 36.
    T. M. Thornburg and E. Suess, “Carbonate Cementation of Granular and Fracture Porosity: Implications for the Cenozoic Hydrologic Development of the Peru Continental Margin,” Proc. ODP, Sci. Res. 112, 95–109(1990).Google Scholar
  37. 37.
    H. Irwin, C. Curtis, and M. Coleman, “Isotopic Evidence for Source of Diagenetic Carbonates Formed During Burial of Organic-Rich Sediments,” Nature 269, 209–213 (1977).CrossRefGoogle Scholar
  38. 38.
    L. A. Vykhristyuk, Organic Matters of the Baikal Bottom Sediments (Nauka, Novosibirsk, 1980) [in Russian].Google Scholar
  39. 39.
    L. A. Vykhristyuk, “On Supply and Distribution of Major Chemical Elements in the Baikal Bottom Sediments,” Litol. Polezn. Iskop., No. 1, 54–65 (1977).Google Scholar
  40. 40.
    R. Conrad, “Quantification of Methanogenic Pathway Using Stable Carbon Isotopic Signatures: A Review and Proposal,” Organic Geochem. 36, 739–752 (2005).CrossRefGoogle Scholar
  41. 41.
    S. I. Golyshev, N. L. Padalko, and S. A. Pechenkin, “Fractionation of Stable Oxygen and Carbon Isotopes in Carbonate Systems,” Geochem. Int. 18, 85–99 (1981).Google Scholar
  42. 42.
    B. B. Namsaraev and T. I. Zemskaya, Microbiological Processes of the Carbon Cycle in the Bottom Sediments of Lake Baikal (Geo, Novosibirsk, 2000) [in Russian].Google Scholar
  43. 43.
    P. Wellsbury, K. Goodman, T. Barth, et al., “Deep Marine Biosphere Fuelled by Increasing Organic Matter Availability during Burial and Heating,” Nature 388, 573–576(1997).CrossRefGoogle Scholar
  44. 44.
    R. H. Becker and R. N. Clayton, “Oxygen Isotope Study of a Precambrian Banded Iron-Formation, Hamersley Range, Western Australia,” Geochim Cosmochim. Acta 40, 1153–1165 (1976).CrossRefGoogle Scholar
  45. 45.
    W. W. Carothers, L. H. Adami, and R. J. Rosenbauer, “Experimental Oxygen Isotope Fractionation between Siderite-Water and Phosphoric Acid Liberated CO2-Siderite,” Geochim. Cosmochim. Acta 52, 2445–2450 (1988).CrossRefGoogle Scholar
  46. 46.
    C. L. Zhang, J. Horita, D. R. Cole, et al., “Temperature-Dependent Oxygen and Carbon Isotope Fractionations of Biogenic Siderite,” Geochim. Cosmochim. Acta 65,2257–2271 (2001).CrossRefGoogle Scholar
  47. 47.
    Y-F. Zheng, “Oxygen Isotope Fractionation in Carbonate and Sulfate Minerals,” Geochem. J. 33, 109–126 (1999).Google Scholar
  48. 48.
    E. D. Sloan, Jr. Clathrate Hydrates of Natural Gases, (Marcel Dekker, New York, 1998)Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. A. Krylov
    • 1
  • O. M. Khlystov
    • 2
  • T. I. Zemskaya
    • 2
  • H. Minami
    • 1
  • A. Hachikubo
    • 1
  • H. Shoji
    • 1
  • M. Kida
    • 3
  • T. P. Pogodaeva
    • 2
  • L. Naudts
    • 4
  • J. Poort
    • 4
  1. 1.Kitami Institute of TechnologyKitamiJapan
  2. 2.Institute of Limnology, Siberian BranchRussian Academy of SciencesIrkutskRussia
  3. 3.National Institute of Advanced Industrial Science and TechnologySapporoJapan
  4. 4.Renard Center of Marine GeologyGhent UniversityGhentBelgium

Personalised recommendations