Geochemistry International

, Volume 46, Issue 1, pp 1–16 | Cite as

Conditions of Quaternary magmatism at Spitsbergen Island

  • N. M. Sushchevskaya
  • A. N. Evdokimov
  • B. V. Belyatsky
  • V. A. Maslov
  • D. V. Kuz’min


Petrological and geochemical data obtained on the Quaternary lavas of volcanoes at Spitsbergen Island indicate that the rocks were produced via the deep-seated crystallization of parental alkaline magmas at 8–10 kbar. The character of clinopyroxene enrichment in incompatible elements indicates that the mineral crystallized from more enriched melts than those inferred from the composition of the host lavas. These melts were close to the parental melts previously found as veinlets in mantle hyperbasite xenoliths in the lavas. According to the character of their enrichment in Pb and Sr radiogenic isotopes and depletion in Nd, the basalts from Spitsbergen Island define a single trend with the weakly enriched tholeiites of the Knipovich Ridge, a fact suggesting the closeness of the enriched sources beneath the continental margin of Spitsbergen and beneath the spreading zone. Magmatic activity at Spitsbergen was related to the evolution of the Norwegian-Greenland basin, which evolved in pulses according to the shift of the spreading axes. The most significant of the latter events took place in the Neogene, when the Knipovich Ridge obtained its modern position near the western boundary of Spitsbergen. Early in the course of the evolution, the emplacement of alkaline melts generated at Spitsbergen into the oceanic mantle could form the enriched mantle, which was later involved in the melting process beneath the spreading zone.


Olivine 204Pb Geochemistry International 86Sr Spreading Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Johansson, D. G. Gee, A. N. Larionov, et al., “Grenvillian and Caledonian Evolution of Eastern Svalbard—A Tale of Two Orogenies,” Terra Nova 17(4), 317–325 (2005).CrossRefGoogle Scholar
  2. 2.
    H. E. F. Amundsen, W. L. Griffin, and S. Y. O’ Reilly, “The Lower Crust and Upper Mantle beneath Northwestern Spitsbergen: Evidence from Xenoliths and Geophysics,” Tectonophysics 139, 169–185 (1987).CrossRefGoogle Scholar
  3. 3.
    T. Prestvik, Cenozoic Plateau Lavas of Spitsbergen—A Geochemical Study, Arbok. Norsk Polarinstituitt. 1977 (Oslo, 1978), pp. 129–143.Google Scholar
  4. 4.
    A. N. Evdokimov, Volcanoes of Spitsbergen, (VNIIO, St. Petersburg, 2000) [in Russian].Google Scholar
  5. 5.
    A. V. Sobolev, A. A. Migdisov, and M. V. Portnyagin, “Incompatible Element Partitioning between Clinopyroxene and Basalt Liquid Revealed by the Study of Melt Inclusions in Minerals from Troodos Lavas, Cyprus,” Petrologiya 4, 326–336 (1996) [Petrology 4, 307–317 (1996)].Google Scholar
  6. 6.
    G. Manhes, J. E. Minster, and C. J. Allegre, “Comparative Uranium-Thorium-Lead and Rubidium-Strontium Study of the Severin Amphoterite: Consequences for Early Solar System Chronology,” Earth Planet. Sci. Lett 39, 14–24 (1978).CrossRefGoogle Scholar
  7. 7.
    P. Richard, N. Schimizu, and C. J. Allegre, “143Nd/144Nd a Natural Tracer: An Application to Oceanic Basalts,” Earth Planet. Sci. Lett., 269–278 (1976).Google Scholar
  8. 8.
    V. A. Maslov and V. G. Lazarenkov, “Structural Types of Mantle Xenoliths from Basanites of Sverre Volcano, Spitsbergen,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 6, 45–52 (1999).Google Scholar
  9. 9.
    V. V. Akinin, A. V. Sobolev, T. Ntaflos, and W. Richter, “Clinopyroxene Megacrysts from Enmelen Melanephelinitic Volcanoes (Chukchi Peninsula, Russia): Application to Composition and Evolution of Mantle Melts,” Contrib. Mineral. Petrol. 150, 85–101 (2005).CrossRefGoogle Scholar
  10. 10.
    N. A. Migdisova, N. M. Sushchevskaya, A. V. Luttinen, and E. M. Mikhalskii, “Variations in the Composition of Clinopyroxene from the Basalts of Various Geodynamic Settings of the Antarctic Region,” Petrologiya 12, 206–224 (2004) [Petrology 12, 176–194 (2004)].Google Scholar
  11. 11.
    L. G. Berry, B. Mason, and R. V. Dietrich, Mineralogy: Concepts, Descriptions, and Determinations (Freeman, San Francisco, 1983; Mir, Moscow, 1987) [in Russian].Google Scholar
  12. 12.
    P. R. A. Wells, “Pyroxene Thermometry in Simple and Complex Systems,” Contrib. Mineral Petrol 62, 129–139 (1977).CrossRefGoogle Scholar
  13. 13.
    P. Nimis and P. Ulmer, “Clinopyroxene Geobarometry of Magmatic Rocks Part 1: An Expanded Structural Geobarometer for Anhydrous and Hydrous, Basic and Ultrabasic Systems,” Contrib. Mineral. Petrol. 133, 122–135 (1998).CrossRefGoogle Scholar
  14. 14.
    S.-S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).Google Scholar
  15. 15.
    D. M. Ionov, S. B. Mukasa, and J.-L. Bodinier, “Sr-Nd-Pb Isotopic Compositions of Peridotite Xenoliths from Spitsbergen: Numerical Modelling Indicates Sr-Nd Decoupling in the Mantle by Melt Percolation Metasomatism,” J. Petrol. 43, 2261–2278 (2002).CrossRefGoogle Scholar
  16. 16.
    N. M. Sushchevskaya, G. A. Cherkashov, B. V. Baranov, et al., “Tholeiitic Magmatism of an Ultraslow Spreading Environment: An Example from the Knipovich Ridge, North Atlantic,” Geokhimiya, No. 3, 254–274 (2005) [Geochem. Int. 43, 222–241 (2005)].Google Scholar
  17. 17.
    A. N. Evdokimov, “New Age Data on Mantle Xenoliths from Spitsbergen Volcanoes,” in Proceedings of 5th International Conference on Complex Study of the Spitsbergen Nature, Apatity, Russia, 2005, (Apatity, 2005), pp. 173–178 [in Russian].Google Scholar
  18. 18.
    E. H. Hauri, J. A. Whitehead, and S. R. Hart, “Fluid Dynamic and Geochemical Aspects of Entrainment in Mantle Plumes,” J. Geophys. Res. 99, 24275–24300 (1994).CrossRefGoogle Scholar
  19. 19.
    S. R. Hart and T. Dunn, “Experimental Cpx/Melt Partitioning of 24 Trace Elements,” Contrib. Mineral. Petrol. 113, 1–8 (1993).CrossRefGoogle Scholar
  20. 20.
    D. A. Ionov, J-L. Bodinier, S. B. Mukasa, and A. Zanetti, “Mechanisms and Sources of Mantle Metasomatism: Major and Trace Element Compositions of Peridotite Xenoliths from Spitsbergen in the Context of Numerical Modeling,” J. Petrol. 43, 2219–2259 (2002).CrossRefGoogle Scholar
  21. 21.
    O. Engen, O. Eldholm, and H. Bungum, “The Arctic Plate Boundary,” J. Geophys. Res 108(B2) (2003).Google Scholar
  22. 22.
    K. Okino, D. Curewitz, M. Asada, et al., “Preliminary Analysis of the Knipovich Ridge Segmentation: Influence of Focused Magmatism and Ridge Obliquity on An Ultraslow Spreading System,” Earth Planet. Sci. Lett. 202, 275–288 (2002).CrossRefGoogle Scholar
  23. 23.
    K. Crane, H. Doss, P. Vogt, et al., “The Role of the Spitsbergen Shear Zone in Determining Morphology, Segmentation and Evolution of the Knipovich Ridge,” Mar. Geophys. Res. 22, 153–205 (2001).CrossRefGoogle Scholar
  24. 24.
    K. Crane, E. Sundvor, R. Buck, and F. Martinez, “Rifting in the Northern Norwegian-Greenland Sea: Thermal Test of Asymmetric Spreading,” J. Geophys. Res. 96, 14529–14550 (1991).CrossRefGoogle Scholar
  25. 25.
    Seismic Atlas of Western Svalbard, Ed. by O. Eiken, Norsk Polarinstitutt Meddelelser, No. 130, (1994).Google Scholar
  26. 26.
    O. G. Olesen, J. Gellein, H. Habrekke, et al., Magnetic Anomaly Map, Norway and Adjacent Ocean Areas, Scale 1: 3000000, (Geol. Surv. Norway, Oslo, 1997).Google Scholar
  27. 27.
    E. A. Gusev and S. I. Shkarubo, “The Anomalous Structure of the Knipovich Ridge,” Russ. J. Earth Sci. 3(2), 145–161 (2001).CrossRefGoogle Scholar
  28. 28.
    K. Tamaki and G. A. Cherkashov, “Knipovich-2000 Scientific Party, Japan-Russia Cooperation at the Knipovich Ridge in the Arctic Sea,” InterRidge News 10, 48–51 (2001).Google Scholar
  29. 29.
    C. DeMets, R. G. Gordon, D. F. Argus, and S. Stein, “Current Plate Motion,” Geophys. Jour. Int. 101, 425–478 (1991).CrossRefGoogle Scholar
  30. 30.
    B. Baranov, Ye. Gusev, N. Suschchevskaya, and G. Cherkasov, “Oligocene Rocks of the Knipovich Ridge (Northern Atlantic) as Evidence of Ridge Jumping and Propagation,” in Proceedings of K2K Post-Cruise Meeting Geology and Geophysics of the Knipovich Ridge, (St. Petersburg, 2001), pp. 7–8.Google Scholar
  31. 31.
    W. Czuba, O. Ritzmann, Y. Nishimura, et al., “Crustal Structure of Northern Spitsbergen along the Deep Seismic Transect between the Molloy Deep and Nordanstlandet,” Geophys. J. Int. 161, 347–364 (2005).CrossRefGoogle Scholar
  32. 32.
    H. E. Hansen, H. E. F. Amundsen, J. E. Snow, and R. B. Pedersen, “A Comparison of Peridotites from the Molloy Deep and the Gakkel Ridge with Mantle Xenolites from Spitsbergen,” Geophys. Res. Abstr. 5, 13638 (2003).Google Scholar
  33. 33.
    E. Hellebrand and J. E. Snow, “Deep Melting and Sodic Metasomatism Underneath the Highly Oblique-Spreading Lena Trough (Arctic Ocean),” Earth Planet. Sci. Lett. 216, 283–299 (2003).CrossRefGoogle Scholar
  34. 34.
    R. B. Whitmarsh, T. A. Minshull, K. E. Louden, et al., “The Role of Syn-Rift Magmatism in the Rift-to-Drift Evolution of the West Iberia Continental Margin: Geophysical Observations,” in Non-Volcanic Rifting of Continental Margin: A Comparison of Evidence from Land and Sea, Ed. by R. C. L. Wilson, R. B. Whitmarsh, et al., Geol. Soc. London Spec. Publ. 187, 107–124 (2002).Google Scholar
  35. 35.
    K. Crane, E. Sundvor, J. P. Foucher, et al., “Thermal Evolution of the Western Svalbard Margin,” Mar. Geophys. Res. 9, 165–194 (1988).CrossRefGoogle Scholar
  36. 36.
    W. Czuba, O. Ritzmann, Y. Nishimura, et al., “Crustal Structure of the Continent-Ocean Transition Zone Along Two Deep Seismic Transects in North-Western Spitsbergen,” Polish Polar Res. 25(3–4), 205–221 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • N. M. Sushchevskaya
    • 1
  • A. N. Evdokimov
    • 2
  • B. V. Belyatsky
    • 2
  • V. A. Maslov
    • 2
  • D. V. Kuz’min
    • 3
    • 4
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.All-Russia Research Institute of Geology and Mineral Resources of the World Ocean (VNII Okeanologiya)St. PetersburgRussia
  3. 3.Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Department of GeochemistryMax Plank Instut fuer ChemieMainzGermany

Personalised recommendations