Experimental investigation of the stability of a chloroborate complex and thermodynamic description of aqueous species in the B-Na-Cl-O-H system up to 350°C

Abstract

The solubility of chlorargyrite, AgClcr, was experimentally studied in NaCl solutions (0.1, 0.2, and 0.5 m) as a function of the concentration of boric acid (up to 5 m) at 70–300°C and saturated water vapor pressure. The experimental data indicated the existence of the chloroborate species B(OH)3Cl. The published data on the thermodynamic properties of aqueous complexes in the B-Na-Cl-O-H system were analyzed. The obtained HKF parameters of aqueous species can be used to calculate equilibria in the system up to 350°C.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. F. Gorbov, Geochemistry of Boron (Nedra, Leningrad, 1976) [in Russian].

    Google Scholar 

  2. 2.

    V. Yu. Prokof’ev, I. S. Peretyazhko, S. Z. Smirnov, et al., Boron and Boric Acids in Endogenous Ore-Forming Fluids (PAS’VA, Moscow, 2003) [in Russian].

    Google Scholar 

  3. 3.

    I. S. Peretyazhko, V. Yu. Prokof’ev, V. E. Zagorskii, et al., “Role of Boric Acids in the Formation of Pegmatite and Hydrothermal Minerals: Petrologic Consequences of Sassolite (H3BO3) Discovery in Fluid Inclusions,” Petrologiya 8, 241–266 (2000) [Petrology 8, 214–237 (2000)].

    Google Scholar 

  4. 4.

    V. Yu. Prokof’ev, N. N. Akinfiev, and E. O. Groznova, “On the Boron Concentration and Forms of Its Occurrence in Hydrothermal Ore-Forming Fluids,” Geol. Rudn. Mestorozhd. 44, 386–397 (2002) [Geol. Ore Dep. 44, 339–349 (2002)].

    Google Scholar 

  5. 5.

    V. Prokof’ev, L. Zorina, F. Reyf, et al., “Conditions of Gold Mineralization by Boron-Rich Fluids,” in Proceedings of 17th International Conference European Current Research on Fluid Inclusions, Budapest, Hungary, 2003 (Budapest, 2003), Acta Mineral. Petrograph. Abstr. Series. 2, pp. 165–166.

  6. 6.

    V. Yu. Prokof’ev, M. G. Dobrovol’skaya, F. G. Reyf, et al., “Composition of Ore-Bearing Fluids in the Dal’negorsk Borosilicate Deposit, Russia,” Dokl. Akad. Nauk 390(5), 676–680 (2003) [Dokl. Earth. Sci. 391, 699–702 (2003)].

    Google Scholar 

  7. 7.

    R. E. Mesmer, C. F. Baes, Jr., and F. H. Sweeton, “Acidity Measurements at Elevated Temperatures. VI. Boric Acid Equilibria,” Inorg. Chem. 11, 537–543 (1972).

    Article  Google Scholar 

  8. 8.

    G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovskii, Reference Book on Thermodynamic Values (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  9. 9.

    O. A. Devina, M. E. Efimov, V. A. Medvedev, and I. L. Khodakovskii, “Thermodynamic Properties of B(OH) 03 and B(OH) 4 in Aqueous Solution at 298–573 K,” Geokhimiya, No. 4, 550–564 (1982).

  10. 10.

    J. C. Tanger IV and H. C. Helgeson, “Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Revised Equations of State for Standard Partial Molal Properties of Ions and Electrolytes,” Amer. J. Sci. 288, 19–98 (1988).

    Article  Google Scholar 

  11. 11.

    L. Hnědkovsky, V. Majer, and R. H. Wood, “Volumes and Heat Capacities of H3BO3(aq) at Temperatures from 298.15 K to 705 K and Pressures to 35 MPa,” J. Chem. Thermodyn. 27, 801–814 (1995).

    Article  Google Scholar 

  12. 12.

    J. K. Hovey, L. G. Hepler, and P. R. Tremaine, “Thermodynamics of Aqueous Iron, Aluminum and Boric Acid at Elevated Temperatures from Heat Capacity and Volume Measurements Near 25°C,” in Proceedings of 11th International Conference on Properties of Steam, Prague, 1989 (Hemisphere, New York, 1989), pp. 351–358.

    Google Scholar 

  13. 13.

    J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere, New York, 1984).

    Google Scholar 

  14. 14.

    E. L. Shock, H. C. Helgeson, and D. A. Sverjensky, “Calculation of the Thermodynamic Properties of Aqueous Species at High Pressures and Temperatures: Standard Partial Molal Properties of Inorganic Neutral Species,” Geochim. Cosmochim. Acta 53, 2157–2183 (1989).

    Article  Google Scholar 

  15. 15.

    J. P. O’Connell, A. V. Sharygin, and R. H. Wood, “Infinite Dilution Partial Molar Volumes of Aqueous Solutes over Wide Ranges of Conditions,” Ind. Eng. Chem. Res. 35, 2808–2812 (1996).

    Article  Google Scholar 

  16. 16.

    A. V. Plyasunov and E. L. Shock, “Correlation Strategy for Determining the Parameters of the Revised Helgeson-Kirkham-Flowers Model for Aqueous Nonelectrolytes,” Geochim. Cosmochim. Acta 65, 3879–3900 (2001).

    Article  Google Scholar 

  17. 17.

    N. N. Akinfiev and L. W. Diamond, “Thermodynamic Description of Aqueous Nonelectrolytes at Infinite Dilution over a Wide Range of State Parameters,” Geochim. Cosmochim. Acta 67, 613–627 (2003).

    Article  Google Scholar 

  18. 18.

    F. J. Millero, The Physical Chemistry of Natural Waters (Wiley-Interscience, New York, 2001).

    Google Scholar 

  19. 19.

    M. Obsil, Ph. D. Thesis (Universite Blaise Pascal, Clermont-Ferrand, 1997).

  20. 20.

    M. Tsuda, I. Shirotani, S. Minomura, and Y. Terayama, “The Effect of Pressure on the Dissociation of Weak Acids in Aqueous Buffers,” Bull. Chem. Soc. Jpn. 49, 2952–2955 (1976).

    Article  Google Scholar 

  21. 21.

    O. S. Alekhin, S. V. Tsai, V. N. Gilyarov, et al., “PTVX Data in the H3BO3-H2O and NaB(OH)4-H2O Systems within a Temperature Range of 298–573 K and Pressure Values from Equilibrium to 80 MPa,” Zh. Prikl. Khim. 66, 441–444 (1993).

    Google Scholar 

  22. 22.

    J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SUPCRT92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 bars and 0 to 1000°C,” Comp. Geosci. 18, 899–947 (1992).

    Article  Google Scholar 

  23. 23.

    P. A. Kryukov and S. A. Zarubina, “Variations of pH for Some Standard Buffer Solutions at Pressures of up to 1030 × 105 Pa and Temperatures of 0–25°C,” Izv. Sib. Otd. AN SSSR, No. 1, 58–66 (1982).

  24. 24.

    L. M. Rowe, L. B. Tran, and G. Atkinson, “The Effect of Pressure on the Dissociation of Boric Acid and Sodium Borate Ion Pairs at 25°C,” J. Solution Chem. 18, 675–689 (1989).

    Article  Google Scholar 

  25. 25.

    V. P. Mashovets, L. V. Puchkov, S. N. Sidorova, et al., “Density and Saturated Vapor Pressure of NaBO2-H2O Solutions at Temperatures of 25–300°C,” Zh. Prikl. Khim. 47, 546–549 (1974).

    Google Scholar 

  26. 26.

    S. N. Sidorova, L. V. Puchkov, and M. K. Fedorov, “Heat Capacity of NaBO2-H2O Solutions at Temperatures of 25–300°C,” Zh. Prikl. Khim. 48, 253 (1975).

    Google Scholar 

  27. 27.

    D. D. Wagman, W. H. Evens, V. B. Parker, et al., “The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units,” J. Phys. Chem. Ref. Data 11(Suppl. 2) (1982).

  28. 28.

    G. S. Pokrovski, J. Schott, and A. S. Sergeyev, “Experimental Determination of the Stability Constants of NaSO 4 and Na(OH) 04 in Hydrothermal Solutions Using a New High-Temperature Sodium-Selective Glass Electrode—Implications for Boron Isotopic Fractionation,” Chem. Geol. 124, 253–265 (1995).

    Article  Google Scholar 

  29. 29.

    N. N. Akinfiev and A. V. Zotov, “Thermodynamic Description of Chloride, Hydrosulfide, and Hydroxo Complexes of Ag(I), Cu(I), and Au(I) at Temperatures of 25–500°C and Pressures of 1–2000 bar,” Geokhimiya, No. 10, 1–17 (2001) [Geochem. Int. 39, 990–1006 (2001)].

  30. 30.

    B. Tagirov, A. V. Zotov, and N. N. Akinfiev, “Experimental Study of Dissociation of HCl from 350 to 500°C and from 500 to 2500 bars: Thermodynamic Properties of HCl(aq),” Geochim. Cosmochim. Acta 61, 4267–4280 (1997).

    Article  Google Scholar 

  31. 31.

    A. Disteche and S. Disteche, “The Effect of Pressure on the Dissociation of Carbonic Acid from Measurements with Buffered Glass Electrode Cells,” J. Electrochem. Soc. 114, 330–340 (1967).

    Google Scholar 

  32. 32.

    H. Corti, R. Crovetto, and R. Femandez-Prini, “Mobilities and Ion-Pairing in LiB(OH)4 and NaB(OH)4 Aqueous Solutions. A Conductivity Study,” J. Solution Chem. 9, 617–625 (1980).

    Article  Google Scholar 

  33. 33.

    P. A. Kryukov, V. D. Perkovets, L. I. Starostina, and B. S. Smolyakov, “Standardization of the pH values of Buffer Solutions at Temperatures of up to 150°C,” Izv. Sib. Otd. Akad. Nauk SSSR, No. 2, 29–34 (1966).

  34. 34.

    W. T. Wofford, E. F. Gloyona, and K. P. Johnston, “Boric Acid Equilibria in Near-Critical and Supercritical Water,” Ind. Eng. Chem. Res. 37, 2045–2051 (1998).

    Article  Google Scholar 

  35. 35.

    R. Bates, Determination of pH: Theory and Practice (Wiley, New York, 1964; Khimiya, Leningrad, 1972).

    Google Scholar 

  36. 36.

    N. Ingri, “Equilibrium Studies of Polyions,” Acta Chem. Scand. 17, 573–580 (1963).

    Article  Google Scholar 

  37. 37.

    R. L. Bassett, “A Critical Evaluation of the Thermodynamic Data for Boron Ions, Ion Pairs, Complexes, and Polyions in Aqueous Solution at 298.15 K and 1 bar,” Geochim. Cosmochim. Acta 44, 1151–1160 (1980).

    Article  Google Scholar 

  38. 38.

    Yu. V. Shvarov, UT-HEL: A Program for the Calculation of HKF Parameters of Water Species (Version 2.0) (Geol. Fakul’tet MGU, Moscow, 1995) [in Russian] (unpublished).

    Google Scholar 

  39. 39.

    E. L. Shock and H. C. Helgeson, “Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Correlation Algorithms for Ionic Species and Equation of State Predictions to 5 kbar and 1000°C,” Geochim. Cosmochim. Acta 52, 2009–2036 (1988).

    Article  Google Scholar 

  40. 40.

    Von M. Bom, “Volumen und Hydratationswarme der Ionen,” Zeitschr. Physik 1, 45–48 (1920).

    Google Scholar 

  41. 41.

    N. Akinfiev and A. Zotov, “Thermodynamic Description of Equilibria in Mixed Fluids (H2O-Non-Polar Gas) over a Wide Range of Temperature (25 to 700°C) and Pressure (1 to 5000 bars),” Geochim. Cosmochim. Acta 63, 2025–2041 (1999).

    Article  Google Scholar 

  42. 42.

    T. M. Seward, “The Stability of Chloride Complexes of Silver in Hydrothermal Solution up to 350°C,” Geochim. Cosmochim. Acta 40, 1329–1340 (1976).

    Article  Google Scholar 

  43. 43.

    A. V. Zotov, K. A. Levin, I. L. Khodakovskii, and V. K. Kozlov, “Thermodynamic Properties of Chloride Complexes of Ag (I) in Aqueous Solution at 273–623 K,” Geokhimiya, No. 5, 690–702 (1986).

  44. 44.

    R. A. Lidin, L. L. Andreeva, and V. A. Molochko, Reference Book on Inorganic Chemistry. Constants for Inorganic Substances (Khimiya, Moscow, 1987) [in Russian].

    Google Scholar 

  45. 45.

    J. V. Walther and J. Schott, “The Dielectric Constant Approach to Speciation and Ion Pairing at High Temperature and Pressure,” Nature 332, 635–638 (1988).

    Article  Google Scholar 

  46. 46.

    A. G. Orlov and S. N. Smirnov, “Determination of Phase Equilibrium Parameters of a Binary Mixture with a Polar Component Using its Dielectric Constant,” Teploenergetika, No. 8, 66–69 (1994).

  47. 47.

    N. N. Akinfiev, “Numerical Modeling of Heterogeneous Processes,” Geokhimiya, No. 6, 882–890 (1986).

  48. 48.

    D. A. Sverjensky, E. L. Shock, and H. C. Helgeson, “Prediction of Thermodynamic Properties of Aqueous Metal Complexes to 1000°C and 5 kbar,” Geochim. Cosmochim. Acta 61, 1359–1412 (1997).

    Article  Google Scholar 

  49. 49.

    E. L. Shock, D. C. Sassani, M. Willis, and D. A. Sverjensky, “Inorganic Species in Geologic Fluids: Correlations among Standard Molal Thermodynamic Properties of Aqueous Ions and Hydroxide Complexes,” Geochim. Cosmochim. Acta 61, 907–950 (1997).

    Article  Google Scholar 

  50. 50.

    H. C. Helgeson, Complexing and Hydrothermal Ore Deposition (New York, Pergamon, 1964; Mir, Moscow, 1967).

    Google Scholar 

  51. 51.

    B. Tagirov, J. Schott, J.-C. Harrichoury, and J. Escalier, “Experimental Study of the Stability of Aluminate-Borate Complexes in Hydrothermal Solutions,” Geochim. Cosmochim. Acta 68, 1333–1345 (2004).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Original Russian Text © N.N. Akinfiev, M.V. Voronin, A.V. Zotov, V.Yu. Prokof’ev, 2006, published in Geokhimiya, 2006, No. 9, pp. 937–949.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akinfiev, N.N., Voronin, M.V., Zotov, A.V. et al. Experimental investigation of the stability of a chloroborate complex and thermodynamic description of aqueous species in the B-Na-Cl-O-H system up to 350°C. Geochem. Int. 44, 867–878 (2006). https://doi.org/10.1134/S0016702906090035

Download citation

Keywords

  • Boron
  • Molar Volume
  • Boric Acid
  • Geochemistry International
  • Aqueous Species