Skip to main content
Log in

Oxygen fugacity regime in the upper mantle as a reflection of the chemical differentiation of planetary materials

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Oxygen fugacity (fO2) in the Earth’s mantle has a bearing on the problems of the chemical differentiation of the Earth’s materials and formation of the chemical and phase state of its shells. This paper addresses some problems concerning changes in the redox state of the upper mantle over geologic time and through its depth and the possible influence of fO2 stratification in the interiors on geochemical processes. Among these problems are the formation of fluids enriched in H2O, CO2, CH4,and H2; the possible influence of reduced fluid migration from mantle zones with low fO2 values on reactions in the lithosphere; and the formation of films of silicate liquids with high H2O and CO2 contents, which could be responsible for metasomatic transformations in rocks. The formation of a metallic core and accompanying large-scale melting of the silicate part of the Earth are the early mechanisms of the chemical differentiation of the mantle that must have had an effect on the redox state and the composition of volatile components in planetary materials. The molten metallic and silicate phases were prone to gravitational migration, which affected the formation of the metallic core. Volatile components had to be simultaneously formed in the zones of large-scale melting of the early Earth. The composition of these volatiles was largely controlled by the interaction of hydrogen and carbon, the two major gas-forming elements in the mantle, with melt under low fO2 values. A remarkable feature is that, despite fairly low fO2 values imposed by the presence of a metallic phase, both reduced (CH4 and H2) and oxidized species of hydrogen and carbon (H2O, OH and CO −23 ) are stable in the melt. This peculiarity of carbon and hydrogen dissolution in reduced melts may be crucial for the elucidation of mechanisms for the formation of initial amounts of CO2 and H2O connected with incipient melting in the reduced mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. J. Arculus and J. W. Delano, “Oxidation State of the Upper Mantle: Present Conditions, Evolution, and Controls,” in Mantle Xenoliths, Ed. by P. H. Nixon (Wiley, New York, 1987), pp. 119–124.

    Google Scholar 

  2. H. S. C. O’Neill, “The Origin of the Moon and the Early History of the Earth: A Chemical Model: 2. The Earth,” Geochim. Cosmochim. Acta 55, 1159–1172 (1991).

    Google Scholar 

  3. M. J. Walter and R. G. Tronnes, “Early Earth Differentiation,” Earth Planet. Sci. Lett. 225, 253–269 (2004).

    Google Scholar 

  4. I. D. Ryabchikov, “High NiO Content in Mantle-Derived Magmas as Evidence for Material Transfer from the Earth’s Core,” Dokl. Earth Sci. 389A, 437–439 (2003).

    Google Scholar 

  5. I. D. Ryabchikov, “Fluid Regime of Mantle Plumes,” Geochem. Int. 41, 838–843 (2003).

    Google Scholar 

  6. E. M. Galimov, “Redox Evolution of the Earth Caused by a Multistage Formation of Its Core,” Earth Planet. Sci. Lett. 233, 263–276 (2005).

    Article  Google Scholar 

  7. A. A. Kadik and O. A. Lukanin, “Paths of Mantle Out-gassing during Melting: The Role of Partial Melting of upper Mantle Rocks in the Evolution of Fluid Composition and Redox Regime,” Int. Geol. Rev. 27, 563–572 (1985).

    Google Scholar 

  8. A. A. Kadik and O. A. Lukanin, “Paths for Mantle Out-gassing during Melting: Changes in Fluid Composition and Conditions in Basaltic Magmas during Migration to the Surface,” Int. Geol. Rev. 27, 573–586 (1985).

    Google Scholar 

  9. J. R. Holloway and S. Jakobsson, “Volatile Solubilities in Magmas: Transport of Volatiles from Mantles to Planet Surface,” J. Geophys. Res. 91, D505–D508 (1986).

    Google Scholar 

  10. J. F. Kasting, D. H. Eggler, and S. P. Raeburn, “Mantle Redox Evolution and the Oxidation State of the Archean Atmosphere,” J. Geol. 101, 245–257 (1993).

    Google Scholar 

  11. C. Ballhaus and B. R. Frost, “The Generation of Oxidized CO2-Bearing Basaltic Melts from Reduced CH4-Bearing Upper Mantle Sources,” Geochim. Cosmochim. Acta 58, 4431–4440 (1994).

    Google Scholar 

  12. A. A. Kadik, “Evolution of Earth’s Redox State during Upwelling of Carbon-Bearing Mantle,” Phys. Earth Planet. Int. 100, 157–166 (1997).

    Google Scholar 

  13. A. A. Kadik, “Mantle-Derived Reduced Fluids: Relationship to the Chemical Differentiation of Planetary Matter,” Geochem. Int. 41, 844–855 (2003).

    Google Scholar 

  14. A. A. Kadik, F. Pineau, Y. A. Litvin, et al., “Formation of Carbon and Hydrogen Species in Magmas at Low Oxygen Fugacity during Fluid-Absent Melting of Carbon-Bearing Mantle,” J. Petrol. 45, 1297–1310 (2004).

    Article  Google Scholar 

  15. S. F. Foley, “The Genesis of Continental Basic Alkaline Magmas: An Interpretation in Terms of Redox Melting,” J. Petrol. Spec. Lithosphere Issue, 139–161 (1988).

  16. W. R. Taylor and D. H. Green, “Measurement of Reduced Peridotite-C-H-O Solidus and Implications for Redox Melting of the Mantle,” Nature 332, 349–352 (1988).

    Google Scholar 

  17. A. A. Kadik, “Effects of Melting on the Evolution of Fluid and Redox Conditions in the Upper Mantle,” Geochem. Int. 25, 76–84 (1988).

    Google Scholar 

  18. C. Ballhaus, “Redox States of Lithospheric and Asthenospheric Upper Mantle,” Contrib. Mineral. Petrol. 114, 331–348 (1993).

    Article  Google Scholar 

  19. D. Canil, “Vanadium in Peridotites, Mantle Redox and Tectonic Environments: Archean to Present,” Earth Planet. Sci. Lett. 195, 75–90 (2002).

    Article  Google Scholar 

  20. C.-T. A. Lee, A. Brandon, and M. Norman, “Vanadium in Peridotites as a Proxy for Paleo-fO2 during Partial Melting: Prospects, Limitations, and Implications,” Geochim. Cosmochim. Acta 67, 3045–3064 (2003).

    Google Scholar 

  21. A. B. Woodland and M. Koch, “Variation in Oxygen Fugacity with Depth in the Upper Mantle beneath the Kaapvaal Craton, Southern Africa,” Earth Planet. Sci. Lett. 214, 295–310 (2003).

    Article  Google Scholar 

  22. L. T. Bryndzia and B. J. Wood, “Oxygen Thermobarometry of Abyssal Spinel Peridotites: The Redox State and C-O-H Volatile Composition of the Earth’s Suboceanic Upper Mantle,” Am. J. Sci. 290, 1093–1116 (1990).

    Google Scholar 

  23. C. A. McCammon, W. L. Griffin, S. R. Shee, and H. S. C. O’Neill, “Oxidation during Metasomatism in Ultramafic Xenoliths from the Wesselton Kimberlite, South Africa: Implications for the Survival of Diamond,” Contribs. Mineral. Petrol. 141, 287–296 (2001).

    Google Scholar 

  24. B. J. Wood, “Storage and Recycling of H2O and CO2 in the Earth,” in Volatiles in the Earth and Planetary Solar System, Ed. by K. A. Farley (Am. Inst. Phys., New York, 1995), pp. 3–21.

    Google Scholar 

  25. H. S. C. O’Neill, C. A. McCammon, D. Canil, et al., “Mössbauer Spectroscopy of Mantle Transition Zone Phases and Determination of Minimum Fe3+ Content,” Am. Mineral. 78, 456–460 (1993).

    Google Scholar 

  26. A. B. Woodland, J. Kornprobst, and B. J. Wood, “Oxygen Thermobarometry of Orogenic Lherzolite Massifs,” J. Petrol. 33, 203–230 (1992).

    Google Scholar 

  27. L. R. M. Daniels and J. J. Gurney, “Oxygen Fugacity Constraints on the Southern African Lithosphere,” Contrib. Mineral. Petrol. 108, 154–161 (1991).

    Article  Google Scholar 

  28. A. A. Kadik, N. V. Sobolev, E. V. Zharkova, and N. P. Pokhilenko, “Redox Conditions of Formation of Diamond-Bearing Peridotite Xenoliths in the Udachnaya Kimberlite Pipe, Yakutia,” Geochem. Int. 27, 41–53 (1990).

    Google Scholar 

  29. G. S. Mattioli, B. Baker, M. G. Rutter, and E. M. Stolper, “Upper Mantle Oxygen Fugacity and Relationship to Metasomatism,” J. Geol. 97, 521–536 (1989).

    Google Scholar 

  30. N. V. Sobolev, “Mantle Heterogeneity and the Origin of Diamonddiferous Eclogites Siberia: Evidence from Stable Isotopes and Hydroxyl in Garnet,” Am. Mineral. 80, 799–809 (1995).

    Google Scholar 

  31. G. A. Snyder, L. A. Taylor, E. A. Jerde, et al., “Archean Mantle Heterogeneity and the Origin of Diamondiferous Eclogites, Siberia: Evidence from Stable Isotopes and Hydroxyl in Garnet,” Am. Mineral. 80, 799–809 (1995).

    Google Scholar 

  32. D. G. Pearson, S. B. Shirey, R. W. Carlson, et al., “Re-Os, Sm-Nd, and Rb-Sr Isotope Evidence for Thick Archean Lithospheric Mantle beneath the Siberian Craton Modified by Multistage Metasomatism,” Geochim. Cosmochim. Acta 59, 959–977 (1995).

    Google Scholar 

  33. R. W. Luth and D. Canil, “Ferric Iron in Mantle-Derived Pyroxenes and a New Oxybarometer for the Mantle,” Contrib. Mineral. Petrol. 13, 236–248 (1993).

    Google Scholar 

  34. D. Canil and H. S. C. O’Neill, “Distribution of Ferric Iron in Some Upper-Mantle Assemblages,” J. Petrol. 37, 609–635 (1996).

    Google Scholar 

  35. A. A. Kadik, E. V. Zharkova, and Z. V. Spetsius, “Redox Conditions of the Formation of Diamond-Bearing Kyanite Eclogites (Udachnaya Kimberlite Pipe, Yakutia),” Dokl. Akad. Nauk 320, 440–444 (1991).

    Google Scholar 

  36. D. H. Eggler and D. Baker, “Reduced Volatiles in the System C-O-H: Implications to Mantle Melting, Fluid Formation, and Diamond Genesis,” in High Pressure Research in Geophysics, Ed. by S. Akimoto and M. Manghnani (Jpn. Center Acad. Publ., Tokyo, 1982), pp.237–250.

    Google Scholar 

  37. N. V. Sobolev, E. S. Efimova, and L. N. Pospelova, “Native Iron in Yakutia Diamond and Its Paragenesis,” Geol. Geofiz. 22, 18–21 (1981).

    Google Scholar 

  38. T. Stachel, J. W. Harris, and G. P. Brey, “Rare and Unusual Mineral Inclusions in Diamonds from Mwadui, Tansania,” Contrib. Mineral. Petrol. 132, 34–37 (1998).

    Article  Google Scholar 

  39. C. A. McCammon, I. L. Chin, J. J. Gurney, and M. E. McCallum, “Ferric Iron Content of Mineral Inclusion in Diamonds from George Creek, Colorado Determined Using Mössbauer Spectroscopy,” Contrib. Mineral. Petrol. 133, 30–37 (1998).

    Article  Google Scholar 

  40. A. P. Nutman, I. V. Chernyshev, H. Baadsgaard, and A. P. Smelov, “The Aldan Shield of Siberia, USSR: The Age of Its Archean Components and Evidence for Wide-spread Reworking in the Mid-Proterozoic,” Precambrian Res. 54, 195–210 (1992).

    Article  Google Scholar 

  41. A. A. Kadik, E. V. Zharkova, E. V. Bibikova, and M. A. Troneva, “Electrochemical Determination of Intrinsic Oxygen Fugacity in Zircon Crystals of Various Ages,” Geochem. Int. 36, 762–767 (1998).

    Google Scholar 

  42. M. A. Menzies, “Archean, Proterozoic, and Phanerozoic Lithospheres,” in Continental Mantle, Ed. by M. A. Menzies (Clarendon Press, Oxford, 1990), pp. 67–86.

    Google Scholar 

  43. S. Press, G. Witt, H. Seck, et al., “Spinel Peridotite Xenoliths from the Tariat Depression, Mongolia: I. Major Element Chemistry and Mineralogy of a Primitive Mantle Xenolith Suite,” Geochim. Cosmochim. Acta 50, 2587–2599 (1986).

    Google Scholar 

  44. D. A. Ionov, I. V. Ashchepkov, H.-G. Stosch, et al., “Garnet Peridotite Xenoliths from Vitim Volcanic Field, Baikal Region: The Nature of the Garnet-Spinel Peridotite Transition Zone in the Continental Mantle,” J. Petrol. 34, 1141–1175 (1993).

    Google Scholar 

  45. S. M. Glaser, S. F. Foley, and D. Gunther, “Trace Element Compositions of Minerals in Garnet and Spinel Peridotite Xenoliths from the Vitim Volcanic Field, Transbaikalia, Eastern Siberia,” Lithos 48, 263–285 (1999).

    Article  Google Scholar 

  46. A. A. Kadik, E. V. Zharkova, V. I. Kovalenko, and D. A. Ionov, “Upper-Mantle Redox Conditions: Oxygen Fugacity Measurement on Peridotite Xenoliths from the Shavaryn Tsaram Volcano, Mongolia,” Geochem. Int. 26, 12–19 (1989).

    Google Scholar 

  47. A. A. Kadik, E. V. Zharkova, and A. I. Kiselev, “Baikal Rift Zone: Spinel and Garnet Lherzolite Redox State,” Dokl. Akad. Nauk 337, 100–103 (1994).

    Google Scholar 

  48. G. R. Gudmundsson and B. J. Wood, “Experimental Tests of Garnet Peridotite Oxygen Barometry,” Contrib. Mineral. Petrol. 119, 56–67 (1995).

    Google Scholar 

  49. A. A. Kadik, E. V. Zharkova, V. S. Lutkov, and G. R. Tadzhivayev, “Determination of the Redox State of Central and South Tien Shan Mantle Xenoliths,” Geochem. Int. 33, 33–38 (1996).

    Google Scholar 

  50. V. S. Lutkov, N. V. Sharapov, and L. M. Gopfauf, “Petrochemical Types of Alkali Basaltic Rocks in the Southern Tien Shan,” Dokl. Akad. Nauk 303, 1221–1225 (1988).

    Google Scholar 

  51. A. Bezos and E. Humler, “The Fe3+/gSFe Ratios of MORB Glasses and Their Implications for Mantle Melting,” Geochim. Cosmochim. Acta 69, 711–725 (2005).

    Google Scholar 

  52. J. R. Holloway, “Graphite-Melt Equilibria during Mantle Melting: Constraints on CO2 in MORB Magmas and the Carbon Content of the Mantle,” Chem. Geol. 147, 89–97 (1998).

    Article  Google Scholar 

  53. A. A. Kadik, E. V. Zharkova, E. S. Efimova, and N. V. Sobolev, “Electrochemical Determinations of the Oxygen Fugacity of Diamond Crystals,” Dokl. Akad. Nauk 328, 386–389 (1993).

    Google Scholar 

  54. A. L. Jaques, H. S. O’Neill, C. B. Smith, et al., “Diamondiferous Peridotite Xenoliths from the Argyle (AK) Lamproite Pipe, Western Australia,” Contrib. Mineral. Petrol. 104, 255–276 (1990).

    Article  Google Scholar 

  55. D. H. Eggler, J. P. Lorand, and H. O. A. Meyer, “Sulfides, Diamonds, Mantle fO2 and Recycling,” in Extended Abstracts of Fifth International Kimberlite Conference, June 1991, Araxa (Araxa, 1991), Vol. 5, pp. 88–91.

  56. R. J. Arculus, “Oxidation Status of the Mantle: Past and Present,” Annu. Rev. Earth Planet. Sci. 13, 75–95 (1985).

    Article  Google Scholar 

  57. C. McCammon, “Perovskite as a Possible Sink for Ferric Iron in the Lower Mantle,” Nature 387, 694–696 (1997).

    Article  Google Scholar 

  58. C. A. McCammon, D. J. Frost, J. R. Smyth, et al., “Oxidation State of Iron in Hydrous Mantle Phases: Implications for Subduction and Mantle Oxygen Fugacity,” Phys. Earth Planet. Int. 143–144, 157–169 (2004).

    Google Scholar 

  59. B. J. Wood, L. T. Bryndzia, and K. E. Johnson, “Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation,” Science 248, 337–345 (1990).

    Google Scholar 

  60. C. Ballhaus, “Is the Upper Mantle Metal-Saturated?,” Earth Planet. Sci. Lett. 132, 75–86 (1995).

    Article  Google Scholar 

  61. C. A. McCammon and M. G. Kopylova, “A Redox Pro-file of the Slave Mantle and Oxygen Fugacity Control in the Cratonic Mantle,” Contrib. Mineral. Petrol. 148, 55–68 (2004).

    Article  Google Scholar 

  62. A. D. Brandon and D. S. Draper, “Constraints on the Origin of the Oxidation State of Mantle Overlying Subduction Zones: An Example from Simcoe, Washington, USA,” Geochim. Cosmochim. Acta 60, 1739–1749 (1996).

    Article  Google Scholar 

  63. I. J. Parkinson and R. J. Arculus, “The Redox State of Subduction Zones: Insights from Arc Peridotites,” Chem. Geol. 166, 409–423 (1999).

    Google Scholar 

  64. Ch. Lecuyer and Y. Richard, “Long-Term Fluxes and Budget of Ferric Iron: Implication for the Redox States of the Earth’s Mantle and Atmosphere,” Earth Planet. Sci. Lett. 165, 197–211 (1999).

    Google Scholar 

  65. A. Jambon, “Earth Degassing and Large-Scale Geochemical Cycling of Volatile Elements,” in Volatiles in Magmas, Ed. by M. R. Carroll and J. R. Holloway, Rev. Mineral. 30, 479–517 (1994).

    Google Scholar 

  66. B. J. Wood and D. C. Rubie, “The Effect of Alumina on Phase Transformations at the 660-Kilometer Discontinuity from Fe-Mg Partitioning Experiments,” Science 273, 1522–1524 (1996).

    Google Scholar 

  67. D. Canil, H. S. C. O’Neill, D. G. Pearson, et al., “Ferric Iron in Peridotites and Mantle Oxidation States,” Earth Planet. Sci. Lett. 123, 205–220 (1994).

    Article  Google Scholar 

  68. D. Canil, “Vanadium Partitioning between Orthopyroxene, Spinel, and Silicate Melt and the Redox States of Mantle Source Regions for Primary Magmas,” Geochim. Cosmochim. Acta 63, 557–572 (1999).

    Article  Google Scholar 

  69. L. N. Kogarko, “Alkaline Magmatism in the Early History of the Earth,” Petrology 6, 230–236 (1998).

    Google Scholar 

  70. A. A. Kadik and Y. A. Litvin, “Solubility of H and C in Reduced Melts at fO2’s Areas of the Fe Alloy Stability, ” in Proceedings of Goldschmidt Conference 2004 (Copenhagen, 2004), p. A282.

  71. T. Maruoka, G. Kurat, G. Dobosi, and C. Koeberl, “Isotopic Composition of Carbon in Diamonds of Diamondites: Record of Mass Fractionation in the Upper Mantle,” Geochim. Cosmochim. Acta 68, 1635–1644 (2004).

    Article  Google Scholar 

  72. G. W. Wetherill, “Formation of the Earth,” Annu. Rev. Earth Planet. Sci. 18, 205–256 (1990).

    Article  Google Scholar 

  73. M. Javoy, “The Integral Enstatite Chondrite Model of the Earth,” Geophys. Res. Lett. 22, 2219–2222 (1995).

    Article  Google Scholar 

  74. A. A. Kadik and O. A. Lukanin, “Outgassing of the Outer Shells of the Planets under Magma-Ocean Conditions,” Geochem. Int. 23, 131–138 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Kadik, 2006, published in Geokhimiya, 2006, No. 1, pp. 63–79.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadik, A.A. Oxygen fugacity regime in the upper mantle as a reflection of the chemical differentiation of planetary materials. Geochem. Int. 44, 56–71 (2006). https://doi.org/10.1134/S0016702906010071

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702906010071

Keywords

Navigation