Fluid Dynamics

, Volume 53, Issue 5, pp 654–669 | Cite as

Pore-Scale Investigation of Two-Phase Flows in Three-Dimensional Digital Models of Natural Sandstones

  • T. R. ZakirovEmail author
  • A. A. Galeev
  • M. G. Khramchenkov


The results of numerical simulation of the processes of two-phase flow through a porous medium in three-dimensional digital models of the porous space of three natural sandstone samples are given. The calculations are carried out using the lattice Boltzmann equations and the digital field gradient model over a wide range of the capillary numbers and the viscosity ratios of injected and displaced fluids. The conditions of flow through a porous medium with capillary fingering, viscous fingering and with stable displacement front are revealed.

Key words

mathematical simulation X-ray CT heterogeneity of porous space two-phase flows capillary number fingering drainage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Lenormand, E. Touboul, and C. Zarcone, “Numerical Models and Experiments on Immiscible Displacements in PorousMedia,” J. Fluid Mech. 189, 165–187 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    H. Liu, Y. Zhang, and A. J. Valocchi, “Lattice Boltzmann Simulation of Immiscible Fluid Displacement in Porous Media: Homogeneous versus Heterogeneous Pore Network,” Phys. Fluids 27 (5), 052103 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    H. Liu, A. J. Valocchi, C. Werth, Q. Kang, and M. Oostrom, “Pore-scale Simulation of Liquid CO2 Displacement of Water Using a Two-Phase Lattice Boltzmann Model,” Advances in Water Resources 73, 144–158 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    A. M. Tartakovsky and P. Meakin, “Pore Scale Modeling of Immiscible and Miscible Fluid Flows Using Smoothed Particle Hydrodynamics,” Advances inWater Resources 29, 1464–1478 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    A. Ferrari and I. Lunati, “Direct Numerical Simulations of Interface Dynamics to Link Capillary Pressure and Total Surface Energy,” Advances inWater Resources 57, 19–31 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    F. Kazemifar, G. Blois, D. C. Kyritsis, and K. Christensen, “Quantifying the Flow Dynamics of Supercritical CO2-Water Displacement in a 2D Porous Micromodel Using Fluorescent Microscopy and Microscopic PIV,” Advances inWater Resources 95, 352–368 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    N. A. Baryshnikov, G. V. Belyakov, and S. B. Turuntaev, “Two-Phase Jet Flows in Porous Media,” Fluid Dynamics 52 (1), 128–137 (2017).CrossRefzbMATHGoogle Scholar
  8. 8.
    M. Ferer, C. Ji, G. S. Bromhal, J. Cook, G. Ahmadi, and D. H. Smith, “Crossover from Capillary Fingering to Viscous Fingering for Immiscible Unstable Flow: Experiment and Modeling,” Phys. Rev. E. Statistical, Nonlinear, and SoftMatter Phys. 70, 016303 (2004).Google Scholar
  9. 9.
    T. Tsuji, F. Jiang, and K. T. Christensen, “Characterization of Immiscible Fluid Displacement Processes with Various Capillary Numbers and Viscosity Ratios in 3D Natural Sandstone,” Advances in Water Resources 95, 3–15 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    F. Jiang, T. Tsuji, and C. Hu, “Elucidating the Role of Interfacial Tension for Hydrological Properties of Two- Phase Flow in Natural Sandstone by an Improved Lattice Boltzmann Method,” Transport in Porous Media 104, 205–229 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Leclaire, A. Parmigiani, O. Malaspinas, B. Chopard, and J. Latt, “Generalized Three-Dimensional Lattice Boltzmann Color-Gradient Method for Immiscible Two-Phase Pore-Scale Imbibition and Drainage in Porous Media,” Phys. Rev. E. 95, 033306 (2017).Google Scholar
  12. 12.
    S. Schluter, S. Berg, M. Rucker, R. T. Armstrong, H.-J. Vogel, R. Hilfer, and D. Wildenschild, “Pore- Scale Displacement Mechanisms as a Source of Hysteresis for Two-Phase Flow in Porous Media,” Water Resources Research 52, 2194–2205 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    S. Berg, H. Ott, S. Klapp, A. Schwing, R. Neiteler, N. Brussee, A. Makurat, L. Leu, F. Enzmann, J.-O. Schwarz, M. Kersten, S. Irvine, and M. Stampanoni, “Real-Time 3D Imaging of Haines Jumps in Porous Media Flow,” Proc. National Academy of Sciences of the USA 10, 3755–3759 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    R. Mokso, F. Marone, D. Haberthür, J. C. Schittny, G. Mikuljan, A. Isenegger, and M. Stampanoni, “FollowingDynamic Processes by X-ray TomographicMicroscopy,with Sub-Second Temporal Resolution,” in: AIP Conf. Proc., 2011, pp. 38–41.Google Scholar
  15. 15.
    M. Mehravaran and S. K. Hannani, “Simulation of Incompressible Two-Phase Flows with Large Density Differences Employing Lattice Boltzmann and Level Set Methods,” Comput. Methods Appl. Mech. Engrg. 198, 223–233 (2008).ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    A. Q. Raeini, M. Blunt, and B. Bijeljic, “Modelling Two-Phase Flow in Porous Media at the Pore ScaleUsing the Volume-of-Fluid Method,” J. Comput. Phys. 231, 5653–5668 (2012).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    V. E. Badalassi, H. D. Ceniceros, and S. Banerjee, “Computation of Multiphase Systems with Phase Field Models,” J. Comput. Phys., No. 190, 371–397 (2003).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    A. Q. Raeini, M. Blunt, and B. Bijeljic, “Direct Simulations of Two-Phase Flow on Micro-CT Images of Porous Media and Upscaling of Pore-Scale Forces,” Advances inWater Resources 74, 116–126 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford Clarendon, Oxford, 2001).zbMATHGoogle Scholar
  20. 20.
    X. Shan and H. Chen, “Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components,” Phys. Rev. 3, 1815–1819 (1993).Google Scholar
  21. 21.
    H. Huang, J.-J. Huang, and X.-Y. Lu, “Study of Immiscible Displacements in PorousMedia Using a Color- Gradient-Based Multiphase Lattice BoltzmannMethod,” Computers & Fluids 93, 164–172 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    I. Zacharoudiou and E. S. Boek, “Capillary Filling and Haines Jump Dynamics Using Free Energy Lattice Boltzmann Simulations,” Advances inWater Resources 92, 43–56 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    E. Aslan, I. Taymaz, and A. C. Benim, “Investigation of the Lattice Boltzmann SRT and MRT Stability for Lid Driven Cavity Flow,” Int. J. Materials, Mechanics and Manufacturing 2 (4), 317–324 (2014).CrossRefGoogle Scholar
  24. 24.
    S. Leclaire, M. Reggio, and J.-Y. Trépanier, “Numerical Evaluation of Two Recoloring Operators for an Immiscible Two-Phase Flow Lattice Boltzmann model,” Appl.Math. Modelling 36 (5), 2237–2252 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Q. Zou and X. He, “On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGKModel,” Phys. Fluids 9, 1591–1598 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    T. Reis and T. N. Phillips, “Lattice BoltzmannModel for Simulating Immiscible Two-Phase Flows,” J. Phys. A: Math. Theoretical 40, 4033–4053 (2007).ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    J. Huang, F. Xiao, and X. Yin, “Lattice Boltzmann Simulation of Pressure-Driven Two-Phase Flows in Capillary Tube and PorousMedium,” Computers & Fluids 100, 164–172 (2014).CrossRefGoogle Scholar
  28. 28.
    P. Iassonov, T. Gebrenegus, and M. Tuller, “Segmentation of X-ray Computed Tomography Images of Porous Materials: A Crucial Step for Characterization and Quantitative Analysis of Pore Structures,” Water Resources Research 45 (9), 1–12 (2009).CrossRefGoogle Scholar
  29. 29.
    P. Mostaghimi, M. J. Blunt, and B. Bijeljic, “Computations of Absolute Permeability onMicro-CT Images,” Mathematical Geosciences 45, 103–125 (2013).MathSciNetCrossRefGoogle Scholar
  30. 30.
    T. R. Zakirov, A. A. Galeev, E. A. Korolev, and E.O. Statsenko, “FlowProperties of Sandstone and Carbonate Rocks by X-Ray Computed Tomography,” Current Science 110 (11), 2142–2147 (2016).CrossRefGoogle Scholar
  31. 31.
    Y. Mu, R. Sungkorn, and J. Toelke, “Identifying the Representative Flow Unit for Capillary Dominated Two-Phase Flow in Porous Media Using Morphology-Based Pore-Scale Modeling,” Advances in Water Resources 95, 16–28 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    S. J. Jackson, H. Power, and D. Giddings, “Immiscible Thermo-Viscous Fingering in Hele-Shaw Cells,” Computers and Fluids 156, 621–641 (2017).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • T. R. Zakirov
    • 1
    Email author
  • A. A. Galeev
    • 1
  • M. G. Khramchenkov
    • 1
    • 2
  1. 1.Kazan Federal UniversityInstitute of Geology and Petroleum TechnologiesKazanRussia
  2. 2.Federal State Institution “Federal Scientific Centre—Scientific Research Institute of Systems Development,”KazanRussia

Personalised recommendations