Advertisement

Fluid Dynamics

, Volume 53, Issue 4, pp 573–581 | Cite as

Problem of Optimal Control of the Turbulent Boundary Layer on a Permeable Surface in Supersonic Gas Flow

  • K. G. Garaev
  • I. R. Mukhametzyanov
Article
  • 8 Downloads

Abstract

The problem of constructing the law of distribution of the normal component of the velocity of blowing to the turbulent boundary layer at supersonic flow velocities which ensure the minimum convective heat flow transmitted from the boundary layer to the surface is considered. The power of the control system calculated with regard to Darcy’s law of flow through a porous medium acts as the isoperimetric condition. The problemis solved using the Dorodnitsyn generalized integral relations. The numerical experiments carried out in the case of flow past a sphere showed the effectiveness of the optimal blowing laws as compared with the uniform law, namely, the gain in the minimized functional reaches 31.82%.

Keywords

supersonic flow turbulent boundary layer optimal control heat flows spherical surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. K. Sirazetdinov, “Optimum Gasdynamic Problems,” Izv. Vuzov. Aviatsionnaya Tekhika, 2, 26–29 (1963).Google Scholar
  2. 2.
    T. K. Sirazetdinov, Optimization of Systems with Distributed Parameters (Nauka, Moscow, 1977) [in Russian].Google Scholar
  3. 3.
    A. N. Kraiko, “Boundary Layer Optimal Control,” Izv. Vuzov. Aviatsionnaya Tekhika, 1, 124–125 (1979).Google Scholar
  4. 4.
    K. G. Garaev, “A Corollary of Noether’s Theorem for Two-Dimensional Variational Problems of the Meyer Type,” Prikl. Mat. Mekh. 44 (3), 448–453 (1980).MathSciNetGoogle Scholar
  5. 5.
    Zh. Zh. Zhanabekov and A. T. Luk’yanov, “Heat TransferOptimal Control on a Porous Surface,” Izv. Vuzov. Aviatsionnaya Tekhika, 2, 55–61 (1977).ADSGoogle Scholar
  6. 6.
    N. G. Bil’chenko, “Problem of the Boundary LayerOptimal Control of a NonequilibriumDissociating Frozen Gas,” Izv. Vuzov. Aviatsionnaya Tekhika, 2, 12–15 (2002).Google Scholar
  7. 7.
    V. A. Ovchinnikov, “Optimal Control of Friction on a Circular Cylinder with Regard to the Back Action of the Boundary Layer,” Izv. Vuzov. Aviatsionnaya Tekhika, 2, 23–25 (2007).Google Scholar
  8. 8.
    V. K. Kuznetsov, “Optimal Blowing to the Boundary Layer in Supersonic Flow on a Permeable Cylinder,” Vestn. KGTUim.A.N. Tupolev, 2, 43–45 (2006).Google Scholar
  9. 9.
    I. R. Mukhametzyanov, “Analysis of Friction and Heat Flux on a Sphere in the Turbulent Supersonic Flow, Russian Aeronautics 56 (2), 160–165 (2013).CrossRefGoogle Scholar
  10. 10.
    Yu. V. Lapin, Turbulent Boundary Layer in Supersonic Gas Flows (Nauka, Moscow, 1982) [in Russian].Google Scholar
  11. 11.
    R. A. Safarov and G. A. Tirskii, “Turbulent Boundary Layer with Heat Transfer,” in Tr. Mosk. Fiz.-Tekhn. In-ta, Ser. 1. Aeromechanics. Control Processes (Izd-vo MFTI, Moscow, 1973), pp. 43–58.Google Scholar
  12. 12.
    A. A. Dorodnitsyn, “A Method of Solving the Laminar Boundary Layer Equations,” Zh. Prikl. Mekh. Tekh. Fiz., 3, 111–118 (1960).Google Scholar
  13. 13.
    K. G. Garaev, “Optimal Control of Heat andMass Transfer in a Laminar Compressible-Gas Boundary Layer on Permeable Surfaces,” Fluid Dynamics 23 (3), 399–406 (1988).ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Lyu-Shen’ Tsyuan’, “Calculation of the Laminar Boundary Layer in a Compressible Gas in the Presence of Suction or Blowing,” Zh. Vychisl.Mat. Mat. Fiz. 2 (5), 868–883 (1962).Google Scholar
  15. 15.
    Yu. N. Pavlovskii, “Numerical Calculation of the Laminar Boundary Layer in a Compressible Gas,” Vychisl. Matem. Fiz., 5, 884–901 (1962).Google Scholar
  16. 16.
    K. G. Garaev and V. K. Kuznetsov, “An Invariant Variational Problem of the Laminar Boundary Layer,” J. Appl.Mathem.Mechanics 75 (4), 404–409 (2011).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    K. G. Garaev, Lie Groups and Noether’s Theory in the Control Problem with Application to Optimum Boundary Layer Problems (Izd-vo Kazan. Gos. Tekhn. Un-ta, Kazan, 1994) [in Russian].Google Scholar
  18. 18.
    A. A. Lebedev and L. S. Chernobrovkin, Unmanned Vehicle Flight Dynamics (Mashinostroenie, Moscow, 1973) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Tupolev Kazan National Research Technical University (KAI)KazanRussia
  2. 2.Tupolev Kazan National Research Technical University (KAI)Kazan, “Vostok” Branch, Chistopol’Russia

Personalised recommendations