Advertisement

Fluid Dynamics

, Volume 52, Issue 6, pp 786–796 | Cite as

HF-plasmatron experiment and numerical simulation of heat transfer in underexpanded dissociated-nitrogen jets

  • A. N. Gordeev
  • A. F. Kolesnikov
  • V. I. Sakharov
Article
  • 43 Downloads

Abstract

Experiments on heat transfer in underexpanded supersonic jets of high-enthalpy nitrogen are performed on the VGU-4 induction high-frequency plasmatron at a pressure of 10.4 GPa in a compression chamber. At gas flow rates of 2.4 and 3.6 g/s and HF generator powers of 45 and 64 kW the heat fluxes to the copper, stainless steel, MPG-7 graphite, and quartz surfaces are measured at the stagnation point of a water-cooled cylindrical, flat-ended model, 20 mm in diameter. In the same regimes the stagnation pressures are measured. The effect of the surface catalyticity with respect to nitrogen atom recombination on the heat flux is demonstrated and the qualitative catalyticity scale of the studied materials is established. In the supersonic regimes nonequilibrium nitrogen plasma flow in the discharge channel of the plasmatron and the underexpanded jet flow past the model are numerically simulated for the experimental conditions. The experimental and calculated data on the stagnation pressures and the heat fluxes to cooled surfaces of the metals, graphite, and quartz are compared.

Keywords

HF plasmatron dissociated nitrogen underexpanded jets heat transfer catalytic recombination of nitrogen atoms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. Kolesnikov, A. N. Gordeev, and V. I. Sakharov, “Flow and Heat Transfer in Supersonic Air-Plasma Jets; an Experiment on the HF PLasmatron and Numerical Simulation,” in: All-Russian Workshop “Aerophysics and Physical Mechanics in Classical and Quantum Systems. AFM-2007” [in Russian] (Institute for Problems inMechanics, Moscow, 2007), p. 23.Google Scholar
  2. 2.
    A. N. Gordeev, A. F. Kolesnikov, and V. I. Sakharov, “Flow and Heat Transfer in Underexpanded Nonequilibrium Jets of an Induction Plasmatron,” Fluid Dynamics 46 (4), 623 (2011).ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    A. F. Kolesnikov, A. N. Gordeev, and V. I. Sakharov, “Heat Transfer in Underexpanded Nonequilibrium Carbon-Dioxide Jets: Experiment on Induction Plasmatron, Numerical Simulation, and Extrapolation to the Conditions of the Entry into the Martian Atmosphere,” in: Physico-Chemical Kinetics in Gas Dynamics. Vol. 15. Issue 4 [in Russian] (See also: http://chemphys.edu.ru/issues/2014-15-4/articles/238/).Google Scholar
  4. 4.
    A. N. Gordeev, A. F. Kolesnikov, and V. I. Sakharov, “Flow and Heat Transfer in Underexpanded Nonequilibrium Carbon Dioxide Jets: Experiment and Numerical Modeling,” Teplofiz. Vys. Temp. 53, 284 (2015).Google Scholar
  5. 5.
    A. F. Kolesnikov, A. N. Gordeev, S. A. Vasil’evskii, and V. I. Sakharov, “Heat Transfer in Nonequilibrium Dissociated-Nitrogen Jets: Experiment on HF Plasmatron and Numerical Simulation,” in: Physico-Chemical KInetics in Gas Dynamics. Vol. 17. Issue 2 [in Russian] (See also: http://chemphys.edu.ru/issues/2016-17-2/articles/637/).Google Scholar
  6. 6.
    A. N. Gordeev and A. F. Kolesnikov, “High-Frequency Induction Plasmatrons of the VGU Series,” in: Topical Problems in Mechanics. Physico-Chemical Mechanics of Liquids and Gases [in Russian] (Nauka, Moscow, 2010), p. 151.Google Scholar
  7. 7.
    S. A. Vasil’evskii, A. F. Kolesnikov, and M. I. Yakushin, “Determination of Effective Probabilities of Heterogeneous Atom Recombination under the Conditions of the Gas-Phase Reaction Effect on Thermal Fluxes,” Teplofiz. Vys. Temp. 29, 521 (1991).ADSGoogle Scholar
  8. 8.
    N. E. Afonina, V. G. Gromov, and V. I. Sakharov, “HIGHTEMP Technique of High Temperature Gas Flows Numerical Simulations,” in: Proc. 5th Europ. Symp. on Aerothermodyn. Space Vehicles. Cologne, Germany, 2004. SP 563 (ESTEC, Noordwijk, 2004), p. 323.Google Scholar
  9. 9.
    V. P. Glushko et al., Thermodynamic Properties of Individual Materials. Books 1 and 2 [in Russian] (Nauka, Moscow, 1978).Google Scholar
  10. 10.
    S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas dynamics [in Russian] (Nauka, Moscow, 1976).Google Scholar
  11. 11.
    N. E. Afonina, S. A. Vasil’evskii, V. G. Gromov, A. F. Kolesnikov, I. S. Pershin, V. I. Sakharov, and M. I. Yakushin, “Flow and Heat Transfer in Underexpanded Air Jets Issuing from the Sonic Nozzle of a Plasma Generator,” Fluid Dynamics 37 (5), 803 (2002).CrossRefzbMATHGoogle Scholar
  12. 12.
    V. I. Sakharov, “Numerical Simulation of Thermally and Chemically Nonequilibrium Flows and Heat Transfer in Underexpanded Induction Plasmatron Jets,” Fluid Dynamics 42 (6), 1007 (2007).ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    S. A. Vasil’evskii and A. F. Kolesnikov, “Numerical Simulation of Equilibrium Induction Plasma Flows in a Cylindrical Plasmatron Channel,” Fluid Dynamics 35 (5), 769 (2000).CrossRefzbMATHGoogle Scholar
  14. 14.
    L. B. Ibragimova, G. D. Smekhov, and O. P. Shatalov, “Dissociation Rate Constants of Diatomic Molecules under Thermal Equilibrium Conditions,” Fluid Dynamics 34 (1), 153 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    S. A. Losev, V. N. Makarov, and M. Yu. Pogosbekyan, “Model of the Physico-Chemical Kinetics behind the Front of a Very Intense Shock Wave in Air,” Fluid Dynamics 30 (2), 299 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    C. Park, “Review of Chemical-Kinetic Problems of Future NASA Missions. I: Earth Entries,” J. Thermophys. Heat Transfer 7, 385 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    S. A. Losev, V. N. Makarov, M. Ju. Pogosbekyan, O. P. Shatalov, and V. S. Nikol’sky, “Thermochemical Nonequilibrium Kinetic Models in Strong Shock Waves in Air,” AIAA Paper No. 1994 (1990).Google Scholar
  18. 18.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).zbMATHGoogle Scholar
  19. 19.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).Google Scholar
  20. 20.
    N. E. Afonina and V. G. Gromov, “Thermochemical Nonequilibrium Computations for a MARS Express Probe,” in: Proc. 3rd Europ. Symp. Aerothermodyn. Space Vehicles, ESTEC, Noordwijk, The Netherlands, 1998 (1998), p. 179.Google Scholar
  21. 21.
    O. A. Gordeev, A. P. Kalinin, A. L. Komov, V. E. Lyusternik, E. V. Samuilov, I. A. Sokolova, and L. R. Fokin, “Interaction Potentials, Elastic Cross-Sections, and Collision Integrals of Air Components for the Temperatures below 20000 K,” in: Reviews on Thermophysical Properties of Materials. No. 5(55) [in Russian] (Institute of High Temperatures, Moscow, 1985).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. N. Gordeev
    • 1
  • A. F. Kolesnikov
    • 1
  • V. I. Sakharov
    • 2
  1. 1.Ishlinsky Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of MechanicsLomonosov State Moscow UniversityMoscowRussia

Personalised recommendations