Advertisement

Fluid Dynamics

, Volume 52, Issue 3, pp 375–387 | Cite as

Analysis of mixed convection in the Czochralski model in a wide range of Prandtl numbers

  • O. A. Bessonov
Article
  • 32 Downloads

Abstract

The results of the calculations and analysis of the effect of separate and joint rotation of the crystal and the crucible on the flow stability are presented for a wide range of Prandtl numbers (from 0.01 to 10). The regimes with a high stability threshold are determined for different combinations of the rotation velocities. It is shown that for high Prandtl numbers, simultaneous rotation of the crystal and the crucible makes it possible to increase the critical Grashof number in 9–12 times. A resultant diagram (map) of the limiting regimes of natural and mixed convection is constructed. Themethodology of control and analysis of 2D and 3D instability modes is discussed.

Keywords

thermal gravitational convection forced convection crystal growth from the melt hydrodynamic Czochralski model numerical simulation flow stability convective interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Scheel and T. Fukuda, Crystal Growth Technology (Wiley, Chichester, 2003).CrossRefGoogle Scholar
  2. 2.
    V. S. Avduevskii, A. Yu. Ishlinskii, and V. I. Polezhaev, “Fluid Mechanics and Heat and Mass Transfer in Material Production,” Vestn. USSR Academy of Sciences 6), 3–17 (1987).Google Scholar
  3. 3.
    N. V. Nikitin, S. A. Nikitin, and V. I. Polezhaev, “Convective Instabilities in a Hydrodynamic Model of Crystal Growth by the Czochralski Method,” Advances in Mechanics 2 (4) 63–105 (2003).Google Scholar
  4. 4.
    A. A. Wheeler, “Four Test Problems for the Numerical Simulation of Flow in Czochralski Crystal Growth,” J. Cryst. Growth 102 (4), 691–695 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    A. Yu. Gelfgat, “Numerical Study of Three-Dimensional Instabilities of Czochralski Melt Flow Driven by Buoyancy Convection. Thermocapillarity and Rotation,” J. Crystal Growth. Studies on Flow Instabilities in Bulk Crystal Growth 37 (2), 1–26 (2007).Google Scholar
  6. 6.
    N. Crnogorac, H. Wilke, K. A. Cliffe, A. Yu. Gelfgat, and E. Kit, “Numerical Modelling of Instability and Supercritical Oscillatory States in a Czochralski Model System of Oxide Melts,” Cryst. Res. Technol. 43 (6), 606–615 (2008).CrossRefGoogle Scholar
  7. 7.
    P. Hintz and D. Schwabe, “Convection in a Czochralski Crucible. Part 2: Rotating Crystal,” J. Cryst. Growth 222 (1), 356–364 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    M. Teitel, D. Schwabe, and A. Yu. Gelfgat, “Experimental and Computational Study of Flow Instabilities in a Model of Czochralski Growth,” J. Crystal Growth 310 (7), 1343–1348 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    V. S. Berdnikov, V. A. Vinokurov, V. V. Vinokurov, and V. A. Gaponov, “Mixed Convection in Czochralski Method with a Fixed Crucible,”, in: Proc. 4th Russian National Conference on Heat Transfer. V. 3 (MPEI, Moscow, 2006), p. 76–80.Google Scholar
  10. 10.
    O. A. Bessonov and V. I. Polezhaev, “Instabilities of Thermal Gravitational Convection and Heat Transfer in the Czochralski Model at Different Prandtl Numbers,” Fluid Dynamics 48 (1), 23–35 (2013).ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    N. V. Nikitin and V. I. Polezhaev, “Three-Dimensional Convective Instability and Temperature Oscillations in Czochralski Crystal Growth,” Fluid Dynamics 34 (3), 322 (1999).zbMATHGoogle Scholar
  12. 12.
    N. V. Nikitin and V. I. Polezhaev, “Three-Dimensional Effects in Transitional and Turbulent Czochralski Thermal Convection Regimes,” Fluid Dynamics 34 (6), 843 (1999).zbMATHGoogle Scholar
  13. 13.
    O. A. Bessonov and V. I. Polezhaev, “Regime Diagram and Three-Dimensional Effects of Convective Interactions in the Hydrodynamic Czochralski Model,” Fluid Dynamics 49 (2), 149–159 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    O. A. Bessonov, “Convective Interactions and Flow Stability in the Czochralski Model in the Case of Crystal Rotation,” Fluid Dynamics 50 (3), 351–360 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    O. A. Bessonov, “Effect of Crystal and Crucible Rotation on the Flow Stability in the Czochralski Model at Low Prandtl numbers,” Fluid Dynamics 51 (4), 469–477 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    P. Capper and D. Elwell, “Crucible Rotation and Crystal Growth in the Czochralski Geometry,” J. Crystal Growth 30 (3), 352–356 (1975).ADSCrossRefGoogle Scholar
  17. 17.
    K. Kakimoto, M. Watanabe, M. Eguchi, and T. Hibiya, “The Coriolis Force Effect on Convection of Molten Silicon in a Rotating Crucible,” Int. J. Heat Mass Transfer 35 (10), 2551–2555 (1992).CrossRefzbMATHGoogle Scholar
  18. 18.
    Z. Zeng, J. Chen, H. Mizuseki, et al., “Three-DimensionalOscillatory Convection of LiCaAlF6 Melts in Czochralski Crystal Growth,” J. Crystal Growth 252 (4) 538–549 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    Z. Zeng, J. Chen, H. Mizuseki, et al., “Numerical Study on LiCaAlF6 Czochralski Crystal Growth,” Materials Transactions 45 (5), 1515–1521 (2004).CrossRefGoogle Scholar
  20. 20.
    Y.-R. Li, Y. Akiyama, N. Imaishi, and T. Tsukada, “Global Analysis of a Small Czochralski Furnace with Rotating Crystal and Crucible,” J. Crystal Growth 255 (1), 81–92 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    V. S. Berdnikov and V. A. Gaponov, “Mixed Convection in the Regimes of Differential Rotation of the Crystal and the Crucible in the Czochralski method,” in: Proc. 4-th Russian National Conference on Heat Transfer. V. 1 (MPEI, Moscow, 2006), pp. 71–75.Google Scholar
  22. 22.
    B. P. Leonard, “A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation,” Comput. Meth. Appl. Mech. Eng. 19 (1), 59–98 (1979).ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    P. H. Gaskell and A. K. C. Lau, “Curvature-Compensated Convective Transport: SMART, a New Boundedness-Preserving Transport Algorithm,” Int. J. Numer. Meth. Fluids 8 (6), 617–641 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    J. B. Bell, P. Colella, and H. M. Glaz, “A Second Order Projection Method for the Incompressible Navier–Stokes Equations,” J. Comput. Phys. 85 (2), 257–283 (1989).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    R. W. Hockney, “A Fast Direct Solution of Poisson’s Equation Using Fourier Analysis,” J. Assoc. Comput. Mach. 12 (1), 95–113 (1965).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Ishlinsky Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations