Fluid Dynamics

, Volume 51, Issue 3, pp 400–405 | Cite as

Similarity between the heat transfer to a model in an underexpanded dissociated-air jet of a high-frequency plasmatron and to a sphere in a high-velocity flow in the terrestrial atmosphere

  • A. F. Kolesnikov
  • V. I. Sakharov


On the basis of the local heat transfer modeling concept the parameters of supersonic flow past a cylindrical flat-faced model, 0.01m in radius, in an underexpanded dissociate-air jet of the VGU-4 high-frequency plasmatron are recalculated to the conditions of sphere entry in the terrestrial atmosphere. The heat transfer parameters, similar in the experiment and the atmospheric entry, are determined.


induction plasmatron underexpanded jet heat transfer numerical modeling Navier–Stokes equations chemical nonequilibrium air plasma heat transfer modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Gordeev and A. F. Kolesnikov, “High-Frequency Induction Plasmatrons of the VGU Series,” in: Topical Problems inMechanics. Physico-ChemicalMechanics of Liquids and Gases [in Russian], Nauka, Moscow (2010), p. 151.Google Scholar
  2. 2.
    A. F. Kolesnikov and M. I. Yakushin, “Determining the Effective Probabilities of Heterogeneous Atom Recombination from the Heat Fluxes to a Surface in a Dissociated Air Flow,” Mat. Model. 1 3, 44 (1989).MathSciNetzbMATHGoogle Scholar
  3. 3.
    A. N. Gordeev and A. F. Kolesnikov, “New Plasma Flow and Heat Transfer Regimes in the VGU-4 High-Frequency Induction Plasmatron,” in: All-RussianWorkshop ‘Aerophysics and PhysicalMechanics of Classical and Quantum Systems” AFM-2007. Collection of Works [in Russian], Moscow (2007), p. 130.Google Scholar
  4. 4.
    A. N. Gordeev and A. F. Kolesnikov, “Experimental Simulation of Heat Transfer in an HF-Plasmatron with Lengthened Segmented Discharge Channel,” Fluid Dynamics 45 3, 506 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    A. F. Kolesnikov, “Conditions of Simulation of Stagnation Point Heat Transfer from a High-Enthalpy Flow,” Fluid Dynamics 28 1, 131 (1993).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. F. Kolesnikov, “Conditions of the Local Similarity of the Thermochemical Interaction of High-Enthalpy Gas Flows with an Undestructible Surface,” Teplofiz. Vys. Temp. 52 1, 118 (2014).Google Scholar
  7. 7.
    A. F. Kolesnikov and V. I. Sakharov, “Correlation of the Conditions of Model Heat Transfer in UnderexpandedDissociated Carbon Dioxide Jets and in Hypersonic Flow past a Sphere in the Martian Atmosphere,” Fluid Dynamics 50 4, 578 (2015).CrossRefzbMATHGoogle Scholar
  8. 8.
    A. N. Gordeev, A. F. Kolesnikov, and V. I. Sakharov, “Flow and Heat Transfer in Underexpanded Jets of Nonequilibrium Carbon Dioxide. Experiment and Numerical Simulation,” Teplofiz. Vys. Temp. 53 2, 284 (2015).Google Scholar
  9. 9.
    A. N. Gordeev, A. F. Kolesnikov, and V. I. Sakharov, “Flow and Heat Transfer in Underexpanded Nonequilibrium Jets of an Induction Plasmatron,” Fluid Dynamics 46 4, 623 (2011).ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    N. E. Afonina, V. G. Gromov, and V. I. Sakharov, “HIGHTEMP Technique of High Temperature Gas Flows Numerical Simulations,” in: Proc. 5th Europ. Symp. on Aerothermodynamics, Space Vehicles. Cologne, Germany, 2004. SP 263, ESTEC, Noordwijk (2004), p. 323.Google Scholar
  11. 11.
    S. A. Vasil’evskii and A. F. Kolesnikov, “Numerical Simulation of Equilibrium Induction Plasma Flows in a Cylindrical Plasmatron Channel,” Fluid Dynamics 35 5, 769 (2000).CrossRefzbMATHGoogle Scholar
  12. 12.
    Handbook on the Thermodynamic Properties of Individual Matters. Vol. 1. Books 1 and 2 [in Russian], Nauka, Moscow (1978).Google Scholar
  13. 13.
    L. B. Ibragimova, G. D. Smekhov, and O. P. Shatalov, “Dissociation Rate Constants of Diatomic Molecules under Thermal Equilibrium Conditions”, Fluid Dynamics 34 1, 153 (1999).Google Scholar
  14. 14.
    S. A. Losev, V. N. Makarov, and M. Yu. Pogosbekyan, “Model of the Physico-Chemical Kinetics behind the Front of a Very Intense ShockWave in Air,” Fluid Dynamics 30 2, 299 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    C. Park, J. T. Howe, and R. L. Jaffe, “Review of Chemical-Kinetic Problems of Future NASA Missions. II. Earth Entries,” J. Thermophys. Heat Transfer 7, 385 (1993).CrossRefGoogle Scholar
  16. 16.
    S. A. Losev, V. N. Makarov, M. Yu. Pogosbekyan, O. P. Shatalov, and V. S. Nikol’sky, “Thermochemical Nonequilibrium Kinetic Models in Strong ShockWaves in Air,” AIAA Paper No. 1994 (1990).Google Scholar
  17. 17.
    J. O. Hirshfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York (1954).zbMATHGoogle Scholar
  18. 18.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, McGraw Hill, New York (1977).Google Scholar
  19. 19.
    V. I. Sakharov, “Numerical Simulation of Thermally and Chemically Nonequilibrium Flows and Heat Transfer in Underexpanded Induction Plasmatron Jets,” Fluid Dynamics 42 6, 1007 (2007).ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    N. E. Afonina and V. G. Gromov, “Thermochemical Nonequilibrium Computations for a MARS Express Probe,” in: Proc. 3rd Europ. Symp. on Aerothermodynamics, Space Vehicles, ESTEC, Noordwijk (1998), p. 179.Google Scholar
  21. 21.
    O. A. Gordeev, A. P. Kalinin, A. L. Komov, V. E. Lyusternik, and E. V. Samuilov, Reviews on Thermophysical Properties of Matters. No. 5(55) [in Russian], Russian Academy of Sciences, Institute of High Temperatures (1985).Google Scholar
  22. 22.
    V. V. Lunev, Hypersonic Aerodynamics [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  23. 23.
    A. F. Kolesnikov and V. S. Shchelin, “Numerical Analysis of Simulation Accuracy for Hypersonic Heat Transfer in Subsonic Jets of Dissociated Nitrogen,” Fluid Dynamics 25 2, 278 (1990).ADSCrossRefGoogle Scholar
  24. 24.
    A. F. Kolesnikov, “The Concept of Local Simulation for Stagnation Point Heat Transfer in Hypersonic Flows: Applications and Validation,” AIAA Paper No. 2515 (2000).Google Scholar
  25. 25.
    A. F. Kolesnikov and M. I. Yakushin, “Conditions of Simulation of Convective Heat Transfer to Bodies in Hypersonic Flow in Induction Plasmatrons,” Teplofiz. Vys. Temp. 26 44, 742 (1988).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Ishlinsky Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of MechanicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations