Fluid Dynamics

, Volume 51, Issue 2, pp 253–265 | Cite as

Unsteady motion of a bubble in a Hele-Shaw cell

  • M. M. Alimov


New exact solutions of an idealized unsteady single-phase Hele-Shaw problem of air-bubble motion in a slot-type channel are constructed under the assumption of bubble symmetry relative to the central axis of the channel. Qualitative features of the interface evolution, which distinguish this case from the earlier considered cases of Hele-Shaw flow with different geometry, are detected.


interphase boundary single-phase Hele-Shaw problem unsteady bubble motion exact solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Ockendon and S. D. Howison, “P. Y. Kochina and Hele-Shaw in Modern Mathematics, Science, and Technology,” Prikl. Matem. Mekh. 66 3, 515–524 (2002).MathSciNetzbMATHGoogle Scholar
  2. 2.
    P. G. Saffman and G. I. Taylor, “The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid,” Proc. Roy. Soc. London. Ser. A 245 1242, 312–329 (1958).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P. G. Saffman, “Exact Solutions for the Growth of Fingers from a Flat Interface Between two Fluids in a Porous Medium or Hele-Shaw Cell,” Quart. J. Mech. Appl. Math. 1959. V. 12, Pt 2, 146–150 (1959).MathSciNetzbMATHGoogle Scholar
  4. 4.
    S. D. Howison, “Fingering in Hele-Shaw Cells,” J. Fluid Mech. 167 439–453 (1986).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S. D. Howison, “A Note on the Two-Phase Hele-Shaw Problem,” J. Fluid Mech. 409 243–249 (2000).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    L. M. Cummings, Y. E. Hohlov, S. D. Howison, and K. G. Kornev, “Two-Dimensional Solidification and Melting in Potential Flows,” J. Fluid Mech. 378 1–18 (1999).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    M. M. Alimov, “General Solution of the Hele-Shaw Problem for Channel Flows,” Prikl. Matem. Mekh. 70 3, 384–399 (2006).MathSciNetzbMATHGoogle Scholar
  8. 8.
    M. M. Alimov, “Bubble Growth in a Hele-Shaw Cell,” Fluid Dynamics 42 2, 268–281 (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M. M. Alimov, “Evolution of the Boundary of a Viscous Fluid Occupying a Half-Space Domain in a Hele-Shaw Cell,” Fluid Dynamics 48 6, 800–810 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    H. Lamb, Hydrodynamics (Cambridge Univ. Press, Cambridge, 1924).zbMATHGoogle Scholar
  11. 11.
    P. Ya. Polubarinova-Kochina, “To the Problem of Motion of an Oil-Bearing Contour,” Dokl. Akad. Nauk USSR 47 (4) 254–257 (1945).Google Scholar
  12. 12.
    L. A. Galin, “Unsteady Filtration with a Free Boundary,” Dokl. Akad. Nauk USSR 47 4, 250–253 (1945).MathSciNetzbMATHGoogle Scholar
  13. 13.
    P. P. Kufarev, “Solution of the Problem of an Oil-Bearing Contour for a Circle,” Dokl. Akad. Nauk USSR 60 8, 1333–1334 (1948).MathSciNetGoogle Scholar
  14. 14.
    S. D. Howison, “Complex Variable Methods in Hele-Shaw Moving Boundary Problems,” Europ. J. Appl. Math. 3 3, 209–224 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    S. Tanweer, “The Effect of Surface Tension on the Shape of a Hele-Shaw Cell Bubble,” Phys. Fluids 29 11, 3537–3548 (1986).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. A. Lavrent’ev and B. V. Shabat, Methods for the Theory of Functions of a Complex Variable [in Russian] (Nauka, Moscow, 1973).zbMATHGoogle Scholar
  17. 17.
    P. J. Davis, The Schwarz Function and Its Applications (Math. Assoc. of America, Washington, 1974).zbMATHGoogle Scholar
  18. 18.
    Y. E. Hohlov and S. D. Howison, “On the Classification of Solutions to the ZeroSurfaceTension Model for Hele-Shaw Free Boundary Flows,” Quart. Appl. Math. 51 (4),777–789 (1993).MathSciNetzbMATHGoogle Scholar
  19. 19.
    M. M. Alimov “Competition between Fingers in Hele-Shaw Flows,” Fluid Dynamics 43 5, 751–762 (2008).Google Scholar
  20. 20.
    T. Maxworthy, “Bubble Formation, Motion and Interaction in a Hele-Shaw Cell,” J. Fluid Mech. 1986. V. 173, 95–114 (1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Kazan Federal UniversityLobachevsky Institute of Mathematics and MechanicsKazanRussia

Personalised recommendations