Advertisement

Fluid Dynamics

, Volume 51, Issue 2, pp 200–213 | Cite as

Numerical modeling of the laminar-turbulent transition control using a dielectric barrier discharge

  • M. V. Ustinov
Article

Abstract

The control of laminar-turbulent transition driven by Tollmien–Schlichting waves is studied. The control is realized by means of accelerating the boundary layer flow using a dielectric barrier discharge. As distinct from the previous studies based on the solution of the boundary layer equations, the discharge effect on the main flow and unstable disturbances are described by the Navier–Stokes equations.

Keywords

laminar-turbulent transition Tollmien–Schlichting waves dielectric barrier discharge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Vorobiev, R. M. Rennie, and E. J. Jumper, “Lift Enhancement by Plasma Actuators at Low Reynolds Numbers,” AIAA Paper No. 4836 (2010).CrossRefGoogle Scholar
  2. 2.
    A. Duchmann, A. Reeh, R. Quadros, J. Kriegsies, and C. Tropea, “Linear Stability Analysis for Manipulated Boundary Layer Flow Using Plasma Actuators,” in: P. Schlatter and D. Henningson (eds.), Seventh IUTAM Symp. on Laminar-Turbulent Transition, Springer (2010), p. 153.CrossRefGoogle Scholar
  3. 3.
    S. Grundmann and C. Tropea. “Delay of Boundary Layer Transition Using Plasma Actuators,” AIAA Paper No. 1369 (2008).Google Scholar
  4. 4.
    A. Duchmann, A. A. Kurz, A. Widmamm, S. Grundmann, and C. Tropea. “Characterization of Tollmien–Schlichting Wave Damping by DBD Plasma Actuators Using Phase-Locked PIV,” AIAA Paper No. 0903 (2012).CrossRefGoogle Scholar
  5. 5.
    M. N. Kogan, V. M. Litvinov, T. A. Pimenova, A. A. Uspenskii, and M. V. Ustinov, “Control of Laminar-Turbulent Transition Using a Dielectrical Barrier Discharge,” Uch. Zap. TsAGI 17 6, 3 (2011).Google Scholar
  6. 6.
    A. P. Kuryachii, “Control of Cross Flow in the Three-Dimensional Boundary Layer Using Space-Periodic Body Force Action,” Fluid Dynamics 44 2, 233 (2009).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A. P. Kuryachii and S. V. Manuilovich, “Attenuation of the Crossflow Instability in the Three-Dimensional Boundary Layer Using Body Forcing,” Uch. Zap. TsAGI No. 3, 41 (2011).Google Scholar
  8. 8.
    S. I. Chernyshov, A. P. Kuriachii, S. V. Manuilovich, D. A. Russianov, and M. P. Gamirullin, “Theoretical Modeling of the Electrogasdynamic Method of Laminar Flow Control on a Swept Wing,” ICAS 2014 Proc., September 7–12, 2014, St. Petersburg, Russia.Google Scholar
  9. 9.
    J. Kriegseis, C. Schwartz, C. Tropea, and S. Grundmann, “Velocity-Information- Based Force-Term Estimation of Dielectric-Barrier Discharge Plasma Actuator,” J. Phys. D. Appl. Phys. 46, 055202 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    S. V. Manuilovich, “Propagation of Perturbations in Plane Poiseuille Flow betweenWalls of Nonuniform Compliance,” Fluid Dynamics 38 4, 529 (2003).MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. V. Manuilovich, “Propagation of a Tollmien–SchlichtingWave over the Junction between Rigid and Compliant Surfaces,” Fluid Dynamics 39 5, 702 (2004).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Orlov, T. Corke, and M. Patel, “Electric Circuit Model for Aerodynamic Plasma Actuator,” AIAA Paper No. 1206 (2006).CrossRefGoogle Scholar
  13. 13.
    E. V. Bogdanova and O. S. Ryzhov, “Oscillator-Generated Disturbances in a Viscous Flow at Supercritical Frequencies,” Zh. Prikl. Mekh. Tekhn. Fiz. No. 4, 65 (1982).Google Scholar
  14. 14.
    A. R. Hoskinson, N. N. Hershkowitz, and A. E. Ashpis, “Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air,” AIAA Paper No. 485 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Central Aerohydrodynamic Institute (TsAGI)Moscow oblastRussia

Personalised recommendations