Advertisement

Fluid Dynamics

, Volume 51, Issue 2, pp 180–188 | Cite as

Instability of a charged droplet in an inhomogeneous electrostatic field of a thin rod

  • A. I. Grigor’ev
  • A. A. Shiryaev
  • S. O. Shiryaeva
Article

Abstract

The problem of stability of oscillations of a charged droplet in an inhomogeneous electrostatic field of a thin charged rod is investigated in the nonlinear formulation using the asymptotic expansion in two small parameters, namely, the dimensionless equilibrium droplet strain and the ratio of the droplet oscillation amplitude to the droplet radius. It is shown that, when the droplet charge is less than the Rayleigh critical charge, in the inhomogeneous electrostatic field the droplet instability implementation mechanism remains the same as for the charged droplet in the field of a point charge. As the oscillation mode number increases, the critical field parameter reaches saturation tending to the horizontal asymptotics. The longer the rod, the higher the level of the asymptotics. As the rod length increases, the amplitudes of the related droplet oscillations and the increments of the unstable droplet oscillations in the electrostatic field of the rod decrease.

Keywords

charged droplet inhomogeneous electrostatic field of a rod oscillations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Zemskov, S. O. Shiryaeva, and A. I. Grigor’ev, “The Theory of Monodispersion of Liquids by Gravitational and Electric Fields,” J. Coll. Int. Sci. 158, 54–63 (1993).CrossRefGoogle Scholar
  2. 2.
    A. I. Grigor’ev and S. O. Shiryaeva, “The Theoretical Consideration of Physical Regularities of the Electrostatic Dispersion of Liquids as Aerosols,” J. Aerosol Sci. 25, No. 6, 1079–1091 (1994).CrossRefGoogle Scholar
  3. 3.
    S. O. Shiryaeva and A. I. Grigor’ev, “The Semifenomenological Classification of the Modes of Electrostatic Dispersion of Liquids,” J. Electrostatics 34, No. 1, 51–59 (1995).CrossRefGoogle Scholar
  4. 4.
    R. L. Grimmand J. L. Beauchamp, “Dynamics of Field-InducedDroplet Ionization: Time-Resolved Studies of Distortion, Jetting, and Progeny Formation from Charged and Neutral Methanol Droplet Exposed to Strong Electric Fields,” J. Phys. Chem. B. 109, 8244–8250 (2005).CrossRefGoogle Scholar
  5. 5.
    D. Duft, T. Achtzehn, R. Muller et al. “Rayleigh Jets from Levitated Microdroplets, Nature 421, 128 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    J. W. Strutt, “On the Equilibrium of Liquid Conducting Masses Charged with Electricity,” Phil. Mag. 14, 184–186 (1882).CrossRefGoogle Scholar
  7. 7.
    O. V. Kim and P. F. Dunn, “Control Production by in-Flight Electrospraying,” Langmuir 26, 15807–15813 (2010).CrossRefGoogle Scholar
  8. 8.
    S. O. Shiryaeva, A. I. Grigor’ev, and A. A. Shiryaev, “Instability of a Charged Drop in Coulomb and Dipole Fields,” Zh. Techn. Fiz. 85, No. 8, 23–32 (2015).Google Scholar
  9. 9.
    V. V. Batygin and I. N. Toptygin, Book of Electrodynamic Problems (Nauka, Moscow, 1970) [in Russian].Google Scholar
  10. 10.
    A. H. Naifeh, Perturbation Methods (New York,Wiley, 1973; Mir, Moscow, 1976).Google Scholar
  11. 11.
    G. I. Taylor, “Disintegration ofWater Drops in an Electric Field,” Proc. Roy. Soc., London A 280, 383–397 (1964).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. I. Grigor’ev
    • 1
  • A. A. Shiryaev
    • 1
  • S. O. Shiryaeva
    • 1
  1. 1.Demidov Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations