Fluid Dynamics

, 46:505

Toward a nonlinear theory of katabatic winds

  • L. Kh. Ingel


The classic Prandtl slope flow model is generalized to include nonlinear turbulent friction and rotation. Several general regularities are established. In particular, a universal expression for the mass flux along the slope and a relationship between the surface velocity components, both independent of the friction law, are obtained. The applicability of the model to describing katabatic winds on fairly large horizontal scales is discussed.


slope flows Prandtl model nonlinear flow rotation analytical solutions 


  1. 1.
    L.N. Gutman, Introduction to the Nonlinear Theory of Mesometeorological Processes (Gidrometeoizdat, Leningrad, 1969) [in Russian].Google Scholar
  2. 2.
    B. Gebhart, Y. Jaluria, R.L. Mahajan, and B. Sammakia, Buoyancy-Induced Flow and Transport (Hemisphere, Washington, DC, 1988).Google Scholar
  3. 3.
    M.S. Shelkovnikov, Mesometeorological Processes in Mountain Regions and Their Effect on Aircraft Flights (Gidrometeoizdat, Leningrad, 1985) [in Russian].Google Scholar
  4. 4.
    R.G. Barry, Mountain Weather and Climate (Routledge, London, etc., 1981).Google Scholar
  5. 5.
    Chr. Garrett, P. MacCready, and P. Rhines, “Boundary Mixing and Arrested Ekman Layers: Rotating Stratified Flow near a Sloping Boundary,” Annu. Rev. Fluid Mech. 25, 291–323 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    B. Grisogono and J. Oerlemans, “A theory for the Estimation of Surface Fluxes in Simple Katabatic Flows,” Quart. J. Roy. Meteorol. Soc. 127, 2725–2739 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    P.C. Manins and B.L. Sawford, “A Model of Katabatic Winds,” J. Atmos. Sci. 36, 619–630 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    D.E. England and R.T. McNider, “Concerning the Limiting Behavior of Time-Dependent SlopeWinds,” J. Atmos. Sci. 50(11), 1658–1660 (1993).CrossRefGoogle Scholar
  9. 9.
    A.M.J. Davis and R.T. McNider, “The Development of Antarctic Katabatic Winds and Implications for the Coastal Ocean,” J. Atmos. Sci. 54, 1248–1261 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    L.Kh. Ingel, “Toward a Nonlinear Theory of Slope Flows,” Izv. Ros. Akad. Nauk. Fizika Atmosfery i Okeana 36(3), 417–422 (2000).MathSciNetGoogle Scholar
  11. 11.
    I. Stipersky, I. Kavčič, B. Grisogono, and D.R. Durran, “Including Coriolis Effects in the Prandtl Model for Katabatic flow,” Quart. J. Roy. Meteorol. Soc. 133, 101–106 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A.E. Gill, Atmosphere-Ocean Dynamics (Academic Press, New York, 1982).Google Scholar
  13. 13.
    L.Kh. Ingel and L.A. Mikhailova, “On the Theory of the Ekman boundary Layer with Nonlinear Boundary Conditions,” Izv. Akad. Nauk SSSR. Fizika Atmosfery i Okeana 26(7), 675–681 (1990).Google Scholar
  14. 14.
    L.Kh. Ingel “Approximate Analytical Solution of the Nonlinear Problem of Aiflow over a Thermally Inhomogeneous Underlying Surface,” Meteorol. Atmos. Phys. 58(1–4), 13–19 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    L. Prandtl, Führer durch die Strömungslehre (Vieweg, Braunschweig, 1949).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. Kh. Ingel

There are no affiliations available

Personalised recommendations