Fluid Dynamics

, Volume 46, Issue 1, pp 158–168 | Cite as

Formation of differential rotation in a cylindrical fluid layer

  • A. N. Sukhanovsky
Supplement: Vychislitel’naya Mekhanika Sploshnykh Sred (Computational Continuum Mechanics)


The formation of differential rotation in a rotating cylindrical layer heated locally is investigated numerically. In the simulations performed, geometric parameters (the layer height and radius and the heating area), the kinematic viscosity, the heat flux, and the angular velocity of the cylinder were varied. Integral characteristics of differential rotation are obtained. The dependence of the relative angular momentum of the layer on various parameters is investigated.


rotating layer convection differential rotation angular momentum ANSYS CFX software 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.P. Williams, “Thermal Convection in a Rotating Fluid Annulus: Part 3. Suppression of the Frictional Constraint on Lateral Boundaries, J. Atmos. Sci. 25, 1034–1045 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    M.V. Nezlin and E.N. Snezhkin, Rossby Vortices and Spiral Structures (Nauka, Moscow, 1990) [in Russian].Google Scholar
  3. 3.
    V.V. Alekseev, S.V. Kiseleva, and S.S. Lappo, Laboratory Models of Physical Processes (Nauka, Moscow, 2005) [in Russian].Google Scholar
  4. 4.
    P. Hignett, A. Ibbetson, P.D. Killworth, “On Rotating Thermal Convection Driven by Non-Uniform Heating from Below, J. Fluid. Mech. 109, 161–187 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    R. Hide, “An Experimental Study of Thermal Convection in Rotating Liquid,” Phil. Trans. Roy. Soc. London 250, 442–478 (1958).ADSGoogle Scholar
  6. 6.
    H. Riehl and D. Fultz, “Jet Stream and Long Waves in a Steady Rotating-Dishpan Experiment: Structure of the Circulation,” Quart J. R. Met. Soc. 356, 215–231 (1957).ADSCrossRefGoogle Scholar
  7. 7.
    H. Riehl and D. Fultz, “The General Circulation in a Steady Rotating-Dishpan Experiment,” Quart J. R. Met. Soc. 362, 389–417 (1958).ADSCrossRefGoogle Scholar
  8. 8.
    T.W. Spence and D. Fultz, “Experiments on Wave-Transition Spectra and Vacillation in an open Rotating Cylinder,” J. Atmos. Sci. 34, 1261–1285 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    E.L. Koschmieder and E.R. Lewis, “Hadley Circulations on a Nonuniformly Heated Rotating Plate,” J. Atmos. Sci. 43, 2514–2526 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    M.J.S. Belton, G.R. Smith, G. Schubert, and A.D. Del Genio, “Cloud Patterns, Waves and Convection in the Venus Atmosphere,” J. Atmos. Sci. 33, 1394–1417 (1976).ADSCrossRefGoogle Scholar
  11. 11.
    P.J. Gierasch, “Meridional Circulation and the Maintenance of the Venus Atmospheric Rotation,” J. Atmos. Sci. 32, 1038–1044 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    G. Schubert and R.E. Young, “The 4-Day Venus Circulation Driven by Periodic Thermal Forcing,” J. Atmos. Sci. 27, 523–528 (1970).ADSCrossRefGoogle Scholar
  13. 13.
    W.B. Rossow, “A General Circulation Model of Venus-Like Atmosphere,” J. Atmos. Sci. 40, 273–302 (1983).ADSCrossRefGoogle Scholar
  14. 14.
    N. Gillet, D. Brito, D. Jault, and H.-C. Nataf, “Experimental and Numerical Studies of Convection in a Rapidly Rotating Spherical Shell, J. Fluid. Mech. 580, 83–121 (2007).MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    P.L. Read, “Super-Rotation and Diffusion of Axial Angular Momentum: II. A Review of Quasi-Axisymmetric Models of Planetary Atmospheres,” Quart J. R. Met. Soc. 112, 253–272 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    M. Yamamoto and M. Takahashi, “Superrotation Maintained by Meridional Circulation and Waves in a Venus-Like AGCM,” J. Atmos. Sci. 63, 3296–3314 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    M. Yamamoto and H. Tanaka, “Are Geostrophic and Quasi-Geostrophic Approximations Valid in Venus’ Differential Super-Rotation?” J. Geophys. Astrophys. Fluid Dynam. 100, 185–197 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    C. Lee, S.R. Lewis, and P.L. Read, “Superrotation in a Venus General Circulation Model,” J. Geophys. Res. 112, E04S11–E04S11 (2007).CrossRefGoogle Scholar
  19. 19.
    T.L. Miller and R.L. Gall, “Thermally Driven Flow in a Rotating Spherical Shell: Axisymmetric States,” J. Atmos. Sci. 40, 856–868 (1982).ADSCrossRefGoogle Scholar
  20. 20.
    P.L. Read, “Super-Rotation and Diffusion of Axial Angular Momentum: I. ’speed limits’ for Axisymmetric Flow in a Rotating Cylindrical Fluid Annulus,” Quart J. R. Met. Soc. 112, 231–252 (1986).ADSGoogle Scholar
  21. 21.
    P.L. Read, Y.H. Yasuhiro, H. Yamazaki, et al., “Dynamics of Convectively Driven Jets in the Laboratory,” J. Atmos. Sci. 64, 4031–4052 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    V. Batalov, A. Sukhanovsky, and P. Frick, “Laboratory Study of Differential Rotation in a Convective Rotating Layer,” J. Geophys. Astrophys. Fluid Dynam. 104(4), 349–368 (2010).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. N. Sukhanovsky

There are no affiliations available

Personalised recommendations