Fluid Dynamics

, Volume 45, Issue 1, pp 85–95 | Cite as

Modeling of surface phenomena in the presence of surface-active agents on the basis of the density-functional theory

  • O. Yu. Dinariev
  • N. V. Evseev


Within the framework of the density-functionalmethod in multiphase multicomponent mixture hydrodynamics, the possibility of modeling surface-active agents on a “fluid-fluid” phase interface is shown. The method is based on the continuum description of multiphase mixtures with introducing terms quadratic in component density gradients to entropy or free energy. The determining equations are derived. Hydrodynamic model problems which demonstrate certain typical phenomena (the accumulation of surface-active agents on the phase interface, the corresponding decrease in surface tension, and the Gibbs and Marangoni effects) are solved numerically.


density-functional method multiphase hydrodynamics multicomponent mixture surfaceactive agent Gibbs effect Marangoni effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.W. Adamson and A.P. Gast, Physical Chemistry of Surfaces (Wiley, N.Y., 1997).Google Scholar
  2. 2.
    J.M. Rosen, Surfactants and Interfacial Phenomena (Wiley, N.Y., 2004).Google Scholar
  3. 3.
    O.Yu. Dinariev, “On the Hydrodynamic Description of a Multicomponent Multiphase Mixture in Narrow Pores and Thin Layers,” Prikl. Mat. Mekh. 59(5), 776–783 (1995).MathSciNetGoogle Scholar
  4. 4.
    O.Yu. Dinariev, “Thermal Effects in Describing a Multicomponent Mixture by the Density-Functional Method,” Prikl. Mat. Mekh. 62(3), 433–442 (1998).MathSciNetGoogle Scholar
  5. 5.
    O.Yu. Dinariev, “Description of Capillary-Gravity Waves within the Framework of Density-Functional Theory,” Fluid Dynamics 34(5), 729–734 (1999).zbMATHGoogle Scholar
  6. 6.
    O.Yu. Dinariev, “Justification of the Density-FunctionalMethod in Classical and Quantum Statistical Mechanics,” Izv. Vuzov. Fizika 43(9), 3–7 (2000).MathSciNetGoogle Scholar
  7. 7.
    O.Yu. Dinariev, “Describing a Multicomponent Mixture with Surface Phases by the Density-FunctionalMethod,” Prikl. Mat. Mekh. 65(3), 486–494 (2001).Google Scholar
  8. 8.
    O.Yu. Dinariev, “Multicomponent Mixture Flow in an Axisymmetric Capillary in the Presence of a Mobile Surface Phase,” Fluid Dynamics 37(5), 753–761 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    O.Yu. Dinariev, “Description of the Gas Condensate Mixture Flow in an Axisymmetric Capillary by the Density-Functional Method,” Prikl. Mekh. Tekhn. Fiz 44(1), 101–107 (2003).zbMATHMathSciNetGoogle Scholar
  10. 10.
    A.Yu. Demyanov and O.Yu. Dinariev,“Application of the Density-Functional Method to the Numerical Simulation of Multicomponent Multiphase Mixture Flows,” Prikl. Mekh. Tekhn. Fiz 45(5), 68–78 (2004).Google Scholar
  11. 11.
    A.Yu. Demyanov and O.Yu. Dinariev, “Modeling of Multicomponent Multiphase Mixture Flows on the Basis of the Density-FunctionalMethod,” Fluid Dynamics 39(6), 933–944 (2004).CrossRefMathSciNetGoogle Scholar
  12. 12.
    O.Yu. Dinariev and N.V. Evseev, “Describing Two-Phase Mixture Flows with Phase Transitions in Capillaries on the Basis of the Density-Functional Method,” Inzh.-Fiz. Zh. 78(3), 61–67 (2005).Google Scholar
  13. 13.
    O.Yu. Dinariev, “Using the Density-Functional Method in Relativistic Hydrodynamics,” Izv. Vuzov. Fizika 50(3), 71–77 (2007).Google Scholar
  14. 14.
    O.Yu. Dinariev and N.V. Evseev, “Description of Viscous Fluid Flows with a Movable Solid Phase within the Framework of the Density-Functional Theory,” Inzh.-Fiz. Zh. 80(5), 70–77 (2007).Google Scholar
  15. 15.
    O.Yu. Dinariev and N.V. Evseev,“Application of the Density-Functional Theory to Calculating Three-Phase Mixture Flows with Phase Transitions,” Inzh.-Fiz. Zh. 80(6), 173–180 (2007).Google Scholar
  16. 16.
    I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans & Green, London, 1954).Google Scholar
  17. 17.
    L. I. Sedov, Continuum Mechanics, Vol. 1 (Nauka, Moscow, 1973) [in Russian].Google Scholar
  18. 18.
    S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).Google Scholar
  19. 19.
    I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Interscience Publishers, New York, 1968).Google Scholar
  20. 20.
    S. Sternberg, Lectures on Differential Geometry (Prentice Hall, Englewood Cliffs, 1964).zbMATHGoogle Scholar
  21. 21.
    R. Finn, Equilibrium Capillary Surfaces (Springer-Verlag, New York, 1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • O. Yu. Dinariev
  • N. V. Evseev

There are no affiliations available

Personalised recommendations