Fluid Dynamics

, Volume 44, Issue 4, pp 490–501 | Cite as

Numerical investigation of roll convection stability

  • V. V. Kolmychkov
  • O. S. Mazhorova
  • Yu. P. Popov
  • O. V. Shcheritsa
Article
  • 30 Downloads

Abstract

This study is devoted to the mathematical modeling of Rayleigh-Bénard convection in a rectangular cavity with rigid boundaries. The stability of the roll motion induced by an initial disturbance of special form is studied on the basis of two-dimensional and three-dimensional calculations. Different patterns of flow restructuring with respect to the wavenumber are analyzed on the Rayleigh number range Ra = 1708–7000 for the Prandtl numbers Pr = 1 and 0.71.

Keywords

convective stability Rayleigh-Bénard convection numerical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Schlüter, D. Lortz, and F. Busse, “On the Stability of Steady Finite Amplitude Convection,” J. Fluid Mech. 23, 129 (1965).MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    F.H. Busse, “The Oscillatory Instability of Convection Rolls on a Low Prandtl Number Fluid,” J. Fluid Mech. 52, 97 (1972).MATHCrossRefADSGoogle Scholar
  3. 3.
    R.M. Clever and F.H. Busse, “Transition to Time-Dependent Convection,” J. Fluid Mech. 65, 625 (1974).MATHCrossRefADSGoogle Scholar
  4. 4.
    F.H. Busse and R.M. Clever, “Instabilities of Convection Rolls in a Fluid of Moderate Prandtl Number,” J. Fluid Mech. 91, 319 (1979).CrossRefADSGoogle Scholar
  5. 5.
    E.W. Bolton, F.H. Busse, and R.M. Clever, “Oscillatory Instability of Convection Rolls at Intermediate Prandtl Numbers,” J. Fluid Mech. 164, 469 (1986).MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    R.M. Clever and F.H. Busse, “Nonlinear Oscillatory Convection,” J. Fluid Mech. 176, 403 (1987).CrossRefADSGoogle Scholar
  7. 7.
    R.M. Clever and F.H. Busse, “Three-Dimensional Knot Convection in a Layer Heated from Below,” J. Fluid Mech. 198, 345 (1989).MATHCrossRefADSGoogle Scholar
  8. 8.
    A.V. Getling, Rayleigh-Bénard Convection [in Russian], Editorial URSS, Moscow (1999).Google Scholar
  9. 9.
    M.C. Cross, P.G. Daniels, P.C. Hohenberg, and E.D. Siggia, “Phase-Winding Solution in a Finite Container above the Convection Threshold,” J. Fluid Mech. 127, 155 (1983).MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    P.C. Horenberg and M.C. Cross, “An Introduction to Pattern Formation in Nonequilibrium Systems,” in: L. Garido (ed.), Lect. Notes in Physics: Fluctuations and Stochastic Phenomena in Condensed Matter. Physics. Vol. 268, Springer, Berlin (1981), p. 55.Google Scholar
  11. 11.
    R. Krishnamurti, “Further Studies on Transition to Turbulent Convection,” J. Fluid Mech. 60, 285 (1974).CrossRefADSGoogle Scholar
  12. 12.
    R. Krishnamurti, “On the Transition to Turbulent Convection. Part 1. The Transition from Two- to Three-Dimensional Flow,” J. Fluid Mech. 42, 295 (1970).CrossRefADSGoogle Scholar
  13. 13.
    R. Krishnamurti, “On the Transition to Turbulent Convection. Part 2. The Transition to Time-Dependent Flow,” J. Fluid Mech. 42, 309 (1970).CrossRefADSGoogle Scholar
  14. 14.
    F.H. Busse, “Transition to Turbulence in Rayleigh-Bénard Convection,” in: J.P. Gollub and H.L. Swinney, Hydrodynamic Instabilities and the Transition to Turbulence: Topics in Applied Physics. Vol. 45, Springer, Berlin (1979), p. 97.Google Scholar
  15. 15.
    J.P. Gollub and S.V. Benson, “Many Routes to Turbulent Convection,” J. Fluid Mech. 100, 449 (1980).CrossRefADSGoogle Scholar
  16. 16.
    M.M. Chen and J.A. Whitehead, “Evolution of Two-Dimensional Periodic Rayleigh Convection Cells of Arbitrary Wave-Numbers,” J. Fluid Mech. 31, 1 (1968).CrossRefADSGoogle Scholar
  17. 17.
    G.Z. Gershuni and E.M. Zhukhovitskii, Convective Stability of Incompressible Fluids [in Russian], Nauka, Moscow (1972).Google Scholar
  18. 18.
    K. Bühler, K.R. Kirchartz, and H. Oertel, “Steady Convection in a Horizontal Fluid Layer,” Acta Mech. 31, 155 (1979).CrossRefGoogle Scholar
  19. 19.
    C.A.J. Fletcher, Computational Methods in Fluid Dynamics, Springer, Berlin (1988).Google Scholar
  20. 20.
    V.V. Kolmychkov, O.S. Mazhorova, Yu.P. Popov, and E.E. Fedoseev, “Numerical Modeling of the Rayleigh-Bénard Convection,” Russian Academy of Sciences, Institute of Applied Mathematics, Preprint No. 7 (2006).Google Scholar
  21. 21.
    V. Croquette and A. Pocheau, “Wave Number Selection in Rayleigh-Bénard Convective Structure,” in: J.E. Wesfried and S. Zaleski (eds.), Lect. Notes in Physics: Cellular Structures in Instabilities. Vol. 210., Springer, Berlin (1984), p. 104.CrossRefGoogle Scholar
  22. 22.
    O.S. Mazhorova and Yu.P. Popov, “Methods of the Numerical Solution of the Navier-Stokes Equations,” Zh. Vychisl. Mat. Mat. Fiz. 20, 1005 (1980).MATHMathSciNetGoogle Scholar
  23. 23.
    V.V. Kolmychkov, O.S. Mazhorova, and Yu.P. Popov, “Analysis of the Algorithms for Solving the Three-Dimensional Navier-Stokes Equations in Natural Variables,” Diff. Ur. 42, 932 (2006).MathSciNetGoogle Scholar
  24. 24.
    A. Arakawa, “Computational Design for Long-Term Numerical Integration of the Equation of Fluid Motion: Two-Dimensional Incompressible Flow,” J. Comput. Phys. 1, 103 (1966).CrossRefGoogle Scholar
  25. 25.
    B.D. Moiseenko and I.V. Fryazinov, “Conservative Difference Schemes for the Equations of Viscous Incompressible Fluid in Eulerian Variables,” Zh. Vychisl. Mat. Mat. Fiz. 21, 1180 (1981).MathSciNetGoogle Scholar
  26. 26.
    S.V. Ermakov, O.S. Mazhorova, and Yu.P. Popov, “Mathematical Modeling of the Problems of Electrophoretic Separation of Biomixtures. Part 2,” Diff. Ur. 28, 2129 (1992).MATHMathSciNetGoogle Scholar
  27. 27.
    O.M. Belotserkovskii, Numerical Modeling in Continuum Mechanics [in Russian] Fizmatlit, Moscow (1994).Google Scholar
  28. 28.
    V.V. Kolmychkov, O.S. Mazhorova, and Yu.P. Popov, “Mathematical Modeling of the Convective Mass Transfer in the Spatially Three-Dimensional Case. Part 1. Subcritical Convection,” Russian Academy of Sciences, Institute of Applied Mathematics, Preprint No. 92 (2003).Google Scholar
  29. 29.
    V.V. Kolmychkov, O.S. Mazhorova, Y.P. Popov, P. Bontoux, and M.E. Ganaoui, “Identification of the Convective Instability in a Multi-Component Solution by 3D Simulations,” Comptes Rendues Mécanique 333, 739 (2005).MATHCrossRefGoogle Scholar
  30. 30.
    W. Eckhaus, Studies in NonLinear Stability Theory, Springer, Berlin (1965).Google Scholar
  31. 31.
    V.G. Vasin and M.P. Vlasyuk, “Wavelengths of Two-Dimensional Convective Motions in a Horizontal Fluid Layer Heated from Below,” USSR Academy of Sciences, Institute of Applied Mathematics, Preprint No. 84 (1974).Google Scholar
  32. 32.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford (1961).MATHGoogle Scholar
  33. 33.
    L.A. Segel, “Distant Side-Walls Cause Slow Amplitude Modulation of Cellular Convection,” J. Fluid Mech. 38, 203 (1969).MATHCrossRefADSGoogle Scholar
  34. 34.
    A.C. Newell and J.A. Whitehead, “Finite Bandwidth, Finite Amplitude Convection,” J. Fluid Mech. 38, 279 (1969).MATHCrossRefADSGoogle Scholar
  35. 35.
    G.E. Willis, J.W. Deardorff, and R.C.J. Somerville, “Roll-Diameter Dependence in Rayleigh Convection and its Effect upon the Heat Flux,” J. Fluid Mech. 54, 351 (1972).CrossRefADSGoogle Scholar
  36. 36.
    V.S. Berdnikov and A.G. Kirdyashkin, “Spatial Form of Cellular Convection,” Izv. Akad. Nauk SSSR. Fiz. Atm. Okeana 15, 812 (1979).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. V. Kolmychkov
  • O. S. Mazhorova
  • Yu. P. Popov
  • O. V. Shcheritsa

There are no affiliations available

Personalised recommendations