Advertisement

Entomological Review

, Volume 92, Issue 6, pp 688–713 | Cite as

Dormant stages and their participation in adjustment and regulation of life cycles of harvestmen (Arachnida, Opiliones)

  • V. N. Belozerov
Article

Abstract

Information on seasonal adaptations in the life cycles of harvestmen (order Opiliones) summarized in this review reveals a great diversity of these arachnids with respect to duration, voltinism, and phenology of their life cycles, as well as to the number and ontogenetic position of the dormant stages required for survival during the winter season and also for synchronizing development with seasonal climate rhythms. Most harvestmen have stenochronous development with univoltine life cycles synchronized by arrest of development in hibernating eggs or (rarely) diapausing nymphs and adults. The number and arrangement of dormant stages represent stable species-specific traits, with some rare cases of interpopulation differences (e.g., in Phalangium opilio). Eurychronous harvestmen exhibit the year-round occurrence of main ontogenetic stages which show equal abilities for either active development or quiescence (depending upon the external factors). Two alternative types of development arrest are common in univoltine opilionids: (1) diapause induced at the early stage of embryogenesis and terminated during cooling (in Opilio parietinus and eleven other species) with transformation into postdiapause quiescence; (2) cold quiescence enforced by low temperatures at the last stage of egg development just before hatching (in Phalangium opilio and four other species). In conclusion, the systems of seasonal adaptations in Opiliones are compared with those in other arachnids, insects, and crustaceans. Some promising directions in the study of seasonal adaptations in opilionid life cycles are suggested.

Keywords

Entomological Review Acarine Dormant Stage Annual Life Cycle Seasonal Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acosta, L.E., Pereyra, F.E., and Pizzi, R.A., “Field Observations on Pachyloidellus goliath (Opiliones, Gonyleptidae) in Pampa de Achala, Province of Cordoba, Argentina,” Bull. Br. Arachnol. Soc. 10, 23–28 (1995).Google Scholar
  2. 2.
    Alekseev, V.R., Diapause in Crustacea. Ecophysiological Aspects (Nauka, Moscow, 1990) [in Russian].Google Scholar
  3. 3.
    Alekseev, V.R. and Starobogatov, Ya.I., “Types of Diapause in the Crustacea: Definitions, Distribution, Evolution,” Hydrobiologia 320, 15–26 (1996).CrossRefGoogle Scholar
  4. 4.
    Bachmann, E. and Schaefer, M., “Notes on the Life Cycle of Phalangium opilio (Arachnida: Opilionida),” Verh. Naturwiss. Ver. Hamburg N F 26, 255–263 (1983).Google Scholar
  5. 5.
    Belozerov, V.N., “Egg Diapause in the Tick Ixodes ricinus L. and Its Dependence on the Photoperiodic Conditions Acting upon Unfed Females,” Vestnik Leningr. Univ. Ser. Biol., No. 9, 33–37 (1973).Google Scholar
  6. 6.
    Belozerov, V.N., “Life Cycles and Seasonal Adaptations in Ixodoid Ticks,” in N.A. Kholodkovsky Memorial Lectures, Issue 28 (Nauka, Leningrad, 1976), pp. 53–101 [in Russian].Google Scholar
  7. 7.
    Belozerov, V.N., “Induction and Termination of Egg Diapause in the Tick Ixodes ricinus,” in Advances in Medical Entomology and Acarology in the USSR: Proc. of the X Congr. of the All-Union Entomological Society (Leningrad, 1990), pp. 72–74 [in Russian].Google Scholar
  8. 8.
    Belozerov, V.N., “Evolution of Life Cycles in Ticks (Ixodidae) due to Climate Seasonality,” in Modern Acarology, Vol. 2, Ed. by F. Dusbabek and V. Bukva (Academia, Prague, 1991), pp. 135–139 [in Russian].Google Scholar
  9. 9.
    Belozerov, V.N., “Distribution of Quiescent Stages in the Development Cycles of Acarines (Chelicerata: Arachnida: Acari) in Comparison with Mandibulate Arthropods: Insecta and Crustacea,” Trudy Biol. Nauchno-Issled. Inst. Sankt-Petersb. Gos. Univ., No. 53, 193–233 (2007).Google Scholar
  10. 10.
    Belozerov, V.N., “Diapause and Quiescence as Two Main Kinds of Dormancy and Their Significance in Life Cycles of Mites and Ticks (Chelicerata: Arachnida: Acari). Part 1. Acariformes,” Acarina 16, 79–130 (2008).Google Scholar
  11. 11.
    Belozerov, V.N., “Seasonal Adaptations in the Life Cycles of Mites and Ticks: Comparative and Evolutionary Aspects,” in Trends in Acarology: Proc. XII Int. Congr. of Acarology, Ed. by M.W. Sabelis and J. Bruin (Amsterdam, 2010), pp. 319–326.Google Scholar
  12. 12.
    Belozerov, V.N., “Seasonality of Life Cycles and Its Regulation in Spiders (Araneae),” in The Fundamental Problems of Entomology in the XXI Century (Proceedings of the Conference), Ed. by V.E. Kipyatkov and D.L. Musolin (St. Petersburg State Univ., St. Petersburg, 2011), p. 16 [in Russian].Google Scholar
  13. 13.
    Chatzaki, M., Lymberakis, P., Mitov, F., et al., “Phenology of Opiliones on an Altitudinal Gradient on Lefka Ori Mountains, Crete, Greece,” J. Arachnol. 37, 139–146 (2009).CrossRefGoogle Scholar
  14. 14.
    Curtis, D.J. and Machado, G., “Chapter 7. Ecology,” in Harvestmen: the Biology of Opiliones, Ed. by R. Pintoda-Rocha et al. (Harvard Univ. Press, 2007), pp. 280–338.Google Scholar
  15. 15.
    Danilevsky, A.S., Photoperiodism and Seasonal Development of Insects (Leningrad State Univ., Leningrad, 1961) [in Russian].Google Scholar
  16. 16.
    Danks, H.V., Insect Dormancy: an Ecological Perspective (Biol. Survey of Canada, Ottawa, 1987).Google Scholar
  17. 17.
    Dunlop, J.A. and Selden, P.A., “Calibrating the Chelicerate Clock: a Paleontological Reply to Jeyaprakash and Hoy,” Exp. Appl. Acarol. 48, 183–197 (2009).PubMedCrossRefGoogle Scholar
  18. 18.
    Dunlop, J.A. and Webster, M., “Fossil Evidence, Terrestrialization and Arachnid Phylogeny,” J. Arachnol. 27, 86–93 (1999).Google Scholar
  19. 19.
    Edgar, A.L. and Yuan, H.A., “Daily Locomotory Activity in Phalangium opilio and Seven Species of Leiobunum (Phalangida),” Bios 39, 167–176 (1968).Google Scholar
  20. 20.
    Edgar, A.L., “Studies on the Biology and Ecology of Michigan Phalangida (Opiliones),” Misc. Publ. Mus. Zool. Univ. Michigan 144, 1–60 (1971).Google Scholar
  21. 21.
    Gilyarov, M.S., The Properties of Soil as a Habitat and Its Significance in the Evolution of Insects (USSR Acad. Sci., Moscow, 1949) [in Russian].Google Scholar
  22. 22.
    Giribet, G., Edgecombe, G.D., Wheeler, W.C., and Babbitt, C., “Phylogeny and Systematic Position of Opiliones: a Combined Analysis of Chelicerate Relationships Using Morphological and Molecular Data,” Cladistics 18, 5–70 (2002).PubMedGoogle Scholar
  23. 23.
    Gnaspini, P., “Reproduction and Postembryonic Development of Goniosoma spelaeum, a Cavernicolous Harvestman from Southeastern Brazil (Arachnida: Opiliones: Gonyleptidae),” Invert. Repr. Dev. 28, 137–151 (1995).CrossRefGoogle Scholar
  24. 24.
    Gnaspini, P., “Population Ecology of Goniosoma spelaeum, a Cavernicolous Harvestman from Southeastern Brazil (Arachnida, Opiliones, Gonyleptidae),” J. Zool. 239, 417–435 (1996).CrossRefGoogle Scholar
  25. 25.
    Gnaspini, P., “Chapter 14. Development,” Harvestmen: the Biology of Opiliones, Ed. by R. Pinto-da-Rocha et al. (Harvard Univ. Press, 2007), pp. 455–484.Google Scholar
  26. 26.
    Gurney, W.S.C., Crowley, P.H., and Nisbet, R.M., “Stage-Specific Quiescence as a Mechanism for Synchronizing Life Cycles to Seasons,” Theor. Popul. Biol. 46, 319–343 (1994).CrossRefGoogle Scholar
  27. 27.
    Hillyard, P.D. and Sankey, J.H.P., Harvestmen: Keys and Notes for the Identification of the Species. Synopses of the British Fauna (New Series). No. 4 (Second Edition) (The Linnaean Society, London, 1989).Google Scholar
  28. 28.
    Holm, A., “On the Development of Opilio parietinus,” Zool. Bidr. Uppsala 25, 409–422 (1947).Google Scholar
  29. 29.
    Holmberg, R., Angerfili, G., and LaCasse, L.J., “Overwintering Aggregations of Leiobunum paessleri in Caves and Mines (Arachnida, Opiliones),” J. Arachnol. 12, 195–204 (1984).Google Scholar
  30. 30.
    Höregott, H., “Ökologie und Phänologie einiger Chelonethi und Opiliones (Arachnida) des Gonsenheimer Waldes und Sandes bei Mainz,” Senckenberg. Biol. 44, 545–551 (1963).Google Scholar
  31. 31.
    Immel, V., “Zur Biologie und Physiologie von Nemastoma quadripunctatum (Opiliones, Dyspnoi),” Zool. Jahrb. Syst. 83, 129–184 (1954).Google Scholar
  32. 32.
    Jeyaprakash, A. and Hoy, M.A., “First Divergence Time Estimate of Spiders, Scorpions, Mites and Ticks (Subphylum Chelicerata) Inferred from Mitochondrial Phylogeny,” Exp. Appl. Acarol. 47, 1–18 (2009).PubMedCrossRefGoogle Scholar
  33. 33.
    Juberthie, C., “Recherches sur la biologie des opilions,” Ann. Spéléol. 19, 1–237 (1964).Google Scholar
  34. 34.
    Koštal, V., “Eco-Physiological Phases of Insect Diapause,” J. Insect Physiol. 52, 113–127 (2006).PubMedCrossRefGoogle Scholar
  35. 35.
    Kozhanchikov, I.V., “On the Species Specificity and Evolution of Development Cycles in Lepidoptera,” in N.A. Kholodkovsky Memorial Lectures, Issues 9–10 (Nauka, Leningrad, 1959), pp. 5–26 [in Russian].Google Scholar
  36. 36.
    Krantz, G.W. and Walter, D.E. (Eds.), A Manual of Acarology. Third Edition (Texas Tech. Univ. Press, Lubbock, 2009).Google Scholar
  37. 37.
    Lange, A.B., “Subphylum Chelicerata,” in Animal Life, Vol. 3, Ed. by M.S. Gilyarov (Moscow, 1984), pp. 8–108 [in Russian].Google Scholar
  38. 38.
    Leirikh, A.N., Meshcheryakova, E.N., Kuzminykh, G.V., and Kurenshchikov, D.K., “Cold Hardiness and Development Rate as Elements of Adaptive Strategies of Phalangiid Harvestmen (Opiliones, Phalangiidae) in Northeastern Asia,” Zool. Zh. 88(4), 419–428 (2009) [Entomol. Rev. 89 (3), 323–331 (2009)].Google Scholar
  39. 39.
    Machado, G. and Oliveira, P.S., “Reproductive Biology of the Neotropical Harvestman (Goniosoma longipes) (Arachnida: Opiliones: Gonyleptidae): Mating and Oviposition Behavior, Brood Mortality, and Parental Care,” J. Zool. Lond. 246, 359–367 (1998).CrossRefGoogle Scholar
  40. 40.
    Machado, S.F., Ferreira, R.L., and Martens, R.P., “Aspects of the Population Ecology of Goniosoma sp. (Arachnida, Opiliones, Gonyleptidae) in Limestone Caves in Southeastern Brazil,” Trop. Zool. 16, 13–31 (2003).CrossRefGoogle Scholar
  41. 41.
    Mackay, W., Rimsley, C., and Cokendolpher, J., “Seasonal Changes in a Population of Desert Harvestman, Trachyrhinus marmoratus (Arachnida: Opiliones) from Western Texas,” Psyche 99, 207–213 (1992).CrossRefGoogle Scholar
  42. 42.
    Martens, J., “Weberknechte, Opiliones,” in Die Tierwelt Deutschlands, Vol. 64 (G. Fischer Verlag, Jena, 1978), pp. 1–464.Google Scholar
  43. 43.
    Meijer, J., “Different Phenological Strategies in Two Nemastomatid Harvestmen (Arachnida, Opilionida, Nemastomatidae),” Bull. Brit. Arachnol. Soc. 6, 211–216 (1984).Google Scholar
  44. 44.
    Meshcheryakova, E.N., Kuzminykh, G.V., and Marusik, Y.M., “Are Diversity and Distribution of Opiliones in Siberia Limited by Temperature?” in Abstracts of Papers, 25th European Congr. of Arachnology, Alexandroupoli, Greece, 16–21 August, 2009 (2009), pp. 77–78.Google Scholar
  45. 45.
    Mestre, L.A.M. and Pinto-da-Rocha, R., “Population Dynamics of an Isolated Population of the Harvestman Ilhaia cuspidata (Opiliones, Gonyleptidae) in Araucaria Forest (Curitiba, Parana, Brazil),” J. Arachnol. 32, 208–220 (2004).CrossRefGoogle Scholar
  46. 46.
    Mikhailov, K.G., General Arachnology. A Concise Course. Part I. Introduction. Minor Orders (KMK Sci. Press, Moscow, 2011) [in Russian].Google Scholar
  47. 47.
    Mironov, S.V. and Bochkov, A.V., “Modern Conceptions Concerning the Macrophylogeny of Acariform Mites (Chelicerata, Acariformes),” Zool. Zh. 88(8), 922–937 (2009) [Entomol. Rev. 89 (8), 975–992 (2009)].Google Scholar
  48. 48.
    Moritz, M., “Zur Embryonalentwicklung der Phalangiden (Opiliones, Palpatores),” Zool. Jahrb. Anat. 76, 331–370 (1957).Google Scholar
  49. 49.
    Mousseau, T.A. and Dingle, H., “Maternal Effects in Insect Life Histories,” Annu. Rev. Entomol. 36, 511–534 (1991).CrossRefGoogle Scholar
  50. 50.
    Müller, H.J., “Formen der Dormanz bei Insekten,” Nova Acta Leopoldiana N.F. 35, 7–27 (1970).Google Scholar
  51. 51.
    Müller, H.J., Dormanz bei Arthropoden (G. Fischer Verlag, Jena, 1992).Google Scholar
  52. 52.
    Newton, B.L. and Yeargan, K.V., “Population Characteristics of Phalangium opilio (Opiliones: Phalangiidae) in Kentucky Agroecosystems,” Env. Entomol. 31, 92–98 (2002).CrossRefGoogle Scholar
  53. 53.
    Novak, T., Lipovšek, S., Senčič, L., et al., “Adaptations in Phalangiid Harvestmen Gyas annulatus and G. titanus to Their Preferred Water Current Adjacent Habitats,” Acta Oecologia 26, 45–53 (2004).CrossRefGoogle Scholar
  54. 54.
    Phillipson, J., “The Seasonal Occurrence, Life Histories and Fecundity of Harvest-Spiders (Phalangida, Arachnida) in the Neighborhood of Durham City,” Entomol. Monthly Mag. 20(234), 134–138 (1959).Google Scholar
  55. 55.
    Pinto-da-Rocha, R., Machado, G., and Giribet, G. (Eds.), Harvestmen: the Biology of Opiliones (Harvard Univ. Press, Cambridge, 2007).Google Scholar
  56. 56.
    Rüffer, H., “Beiträge zur Kenntniss der Entwicklungsbiologie der Weberknechte,” Zool. Anz. 176, 160–175 (1966).Google Scholar
  57. 57.
    Schaefer, M., “Life Cycles and Diapause,” in Ecophysiology of Spiders, Ed. by W. Nentwig (Springer, Berlin, 1987), pp. 331–347.CrossRefGoogle Scholar
  58. 58.
    Selden, P.A., “Terrestrialization (Invertebrates),” in Palaeobiology II, Ed. by D.E. Briggs and P.R. Crowther (Blackwell Sci. Publ., Oxford, 2001), pp. 71–74.CrossRefGoogle Scholar
  59. 59.
    Shelford, V.E., Laboratory and Field Ecology (Williams and Wilkins, Baltimore, 1929).Google Scholar
  60. 60.
    Shultz, J.W., “Evolutionary Morphology and Phylogeny of Arachnida,” Cladistics 6, 1–38 (1990).CrossRefGoogle Scholar
  61. 61.
    Shultz, J.W., “A Phylogenetic Analysis of the Arachnid Orders Based on Morphological Characters,” Zool. J. Linn. Soc. 150, 221–265 (2007).CrossRefGoogle Scholar
  62. 62.
    Slagsvold, T., “The Phenology of Mitopus morio (Opiliones) in Norway,” Norw. J. Entomol. 23, 7–16 (1976).Google Scholar
  63. 63.
    Starobogatov, Ya.I., “The Taxonomic Position and the System of the Order of Spiders (Araneiformes),” Trudy Zool. Inst. Akad. Nauk SSSR 139, 4–16 (1985).Google Scholar
  64. 64.
    Starobogatov, Ya.I., “The System and Phylogeny of Arachnida (Analysis of Morphology of the Palaeozoic Groups),” Paleontol. Zh. 24, 4–17 (1990).Google Scholar
  65. 65.
    Tauber, M.J., Tauber, C.A., and Masaki, S., Seasonal Adaptations of Insects (Oxford Univ. Press, New York, 1986).Google Scholar
  66. 66.
    Tischler, W., “Zur Biologie und Ökologie des Opilioniden Mitopus morio,” Biol. Zentralblatt 86, 473–484 (1967).Google Scholar
  67. 67.
    Todd, V., “The Habits and Ecology of the British Harvestmen (Arachnida, Opiliones), with Special Reference to Those of the Oxford District,” J. Animal Ecol. 18, 209–229 (1949).CrossRefGoogle Scholar
  68. 68.
    Tretzel, E., “Reife- und Fortpflanzungszeit bei Spinnen,” Zschr. Morphol. Ökol. Tiere 42, 634–691 (1954).CrossRefGoogle Scholar
  69. 69.
    Tsurusaki, N., “Parthenogenesis and Geographic Variation of Sex Ratio in Two Species of Leiobunum (Arachnida, Opiliones),” Zool. Sci. 3, 517–532 (1986).Google Scholar
  70. 70.
    Tsurusaki, N., “Phenology and Biology of Harvestmen in and near Sapporo, Hokkaido, Japan, with Some Taxonomical Notes on Nelima suzukii n. sp. and Allies (Arachnida, Opiliones),” Acta Arachnol. 52, 5–24 (2003).CrossRefGoogle Scholar
  71. 71.
    Tsurusaki, N. and Takenaka, K., “Recent Expansion of Distributional Range of Phalangium opilio, a Presumably Introduced Harvestman, in Hokkaido, Japan, with Notes on the Chromosomes and Male Dimorphism,” in Abstracts of Papers, XVIII Int. Congr. of Arachnology. Siedlice, Poland, 2010 (2010), pp. 445–447.Google Scholar
  72. 72.
    Tyshchenko, V.P., “Evolution of Seasonal Adaptations in Insects,” Zh. Obshchei Biol. 44, 10–22 (1983).Google Scholar
  73. 73.
    Ushatinskaya, R.S., “Insect Diapause and Its Modifications,” Zh. Obshchei Biol. 34, 539–558 (1973).Google Scholar
  74. 74.
    Ushatinskaya, R.S. “Insect Dormancy and Its Classification,” Zool. Jahrb. Syst. 103, 76–97 (1976).Google Scholar
  75. 75.
    Vinogradova, E.B., “The Maternal Effect on the Progeny Diapause in Insects,” in N.A. Kholodkovsky Memorial Lectures, Issue 26 (Nauka, Leningrad, 1973), pp. 39–66 [in Russian].Google Scholar
  76. 76.
    Walter, D.E. and Proctor, H.C., Mites. Ecology, Evolution and Behavior (CABI Publ., New York, 1999).Google Scholar
  77. 77.
    Weygoldt, P., “Evolution and Systematics of the Chelicerata,” Exp. Appl. Acarol. 22, 63–79 (1998).CrossRefGoogle Scholar
  78. 78.
    Weygoldt, P. and Paulus, H.F., “Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata,” Zschr. Zool. Syst. Evol.-Forschung 17, 85–116, 177–200 (1979).CrossRefGoogle Scholar
  79. 79.
    Wheeler, W.C. and Hayashi, C.Y., “The Phylogeny of the Extant Chelicerate Orders,” Cladistics 14, 173–192 (1998).CrossRefGoogle Scholar
  80. 80.
    Zakhvatkin, A.A., “Classification of Acarines and Their Position in the System of Chelicerata,” Parasitol. Sbornik Zool. Inst. Akad. Nauk SSSR 14, 5–46 (1952).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. N. Belozerov
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations