Advertisement

Doklady Physical Chemistry

, Volume 488, Issue 2, pp 151–153 | Cite as

Direct Observation of Processes at Particle-to-Particle Contacts during Electric Pulse Consolidation of a Titanium Powder

  • A. S. RogachevEmail author
  • S. G. Vadchenko
  • V. A. Kudryashov
  • A. S. Shchukin
  • M. I. Alymov
PHYSICAL CHEMISTRY
  • 8 Downloads

Abstract

Direct high-speed micro video recording data proved the existence of highly overheated zones at contacts of powder particles through which electric current pulses about 1 ms long were sent. The overheating might exceed 1600 K and could give rise to liquid-phase sintering necks, the sizes of which correlated well with the sizes of the overheated zones. Temperature field microheterogeneities during electric pulse heating of the powder medium gave an insight into unusually high rates of consolidation of powder materials during spark plasma sintering.

Notes

ACKNOWLEDGMENTS

We thank S.M. Godin for designing and building an electronic circuit for controlling an electric discharge.

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 19–03–00293).

REFERENCES

  1. 1.
    Bordia, R.K., Kang, S.-J.L., and Olevsky, E.A., J. Am. Ceram. Soc., 2017, vol. 100, pp. 2314–2352.CrossRefGoogle Scholar
  2. 2.
    Hulbert, D.M., Anders, A., Dudina, D.V., Andersson, J., Jiang, D., Unuvar, C., Anselmi-Tamburini, U., Lavernia, E.J., and Mukherjee, A.K., J. Appl. Phys., 2008, vol. 104, pp. 033305(1–7).Google Scholar
  3. 3.
    Hulbert, D.M., Anders, A., Andersson, J., Lavernia, E.J., and Mukherjee, A.K., Scr. Mater., 2009, vol. 60, pp. 835–838.CrossRefGoogle Scholar
  4. 4.
    Chawake, N., Pinto, L.D., Srivastav, A.K., Akkiraju, K., Murty, B.S., and Kottada, R.S., Scr. Mater., 2014, vol. 93, pp. 52–55.CrossRefGoogle Scholar
  5. 5.
    Trzaska, Z., Collard, C., Durand, L., Couret, A., Chaix, J.-M., Fantozzi, G., and Monchoux, J.-P., J. Am. Ceram. Soc., 2019, vol. 102, pp. 654–661.Google Scholar
  6. 6.
    Emel'yanov, A.N., Shkiro, V.M., Rogachev, A.S., and Rubtsov, V.I., Izv. Vyssh. Uchebn. Zaved., Tsvet. Met., 2002, no. 2, pp. 67–70.Google Scholar
  7. 7.
    Kochetov, N.A., Rogachev, A.S., Emel’yanov, A.N., Illarionova, E.V., and Shkiro, V.M., Fiz. Goreniya Vzryva, 2004, vol. 40, pp. 74–80.Google Scholar
  8. 8.
    Yang, C., Zhu, M.D., Luo, X., Liu, L.H., Zhang, W.W., Long, Y., Xiao, Z.Y., Fua, Z.Q., Zhang, L.C., and Lavernia, E.J., Scr. Mater., 2017, vol. 139, pp. 96–99.CrossRefGoogle Scholar
  9. 9.
    Aman, Y., Garnier, V., and Djurado, E., J. Mater. Sci., 2012, vol. 47, pp. 5766–5773.CrossRefGoogle Scholar
  10. 10.
    Frei, J.M., Anselmi-Tamburini, U., and Munir, Z.A., J. Appl. Phys., 2007, vol. 101, pp. 114914(1–8).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Rogachev
    • 1
    Email author
  • S. G. Vadchenko
    • 1
  • V. A. Kudryashov
    • 1
  • A. S. Shchukin
    • 1
  • M. I. Alymov
    • 1
  1. 1.Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations