Advertisement

Doklady Physical Chemistry

, Volume 480, Issue 2, pp 81–84 | Cite as

Micro-Raman Spectroscopy of Nanostructured Silver Sulfide

  • S. I. Sadovnikov
  • E. G. Vovkotrub
  • A. A. Rempel
Physical Chemistry
  • 1 Downloads

Abstract

Nanostructured silver sulfide powder with an average particle size of about 45 nm, an acanthite α-Ag2S monoclinic structure (space group P21/c), and nonstoichiometric composition Ag1.93S has been synthesized by the chemical deposition method. The silver sulfide nanopowder has been studied by Raman spectroscopy. According to the Raman scattering data, heating the nanopowder with high-power laser radiation in air leads to photoinduced decomposition of the Ag1.93S nanopowder to give silver metal. The Raman spectrum of the silver sulfide nanopowder shows a series of bands in the low-frequency range from 90 to 260 cm–1 associated with vibrations of silver atoms, Ag–S bonds, and symmetric Ag–S–Ag longitudinal modes. Raman spectroscopy confirmed an acanthite monoclinic structure of synthesized silver sulfide nanopowder.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tang, A., Wang, Yu., Ye, H., Zhou, C., Yang, C., Li, X., Peng, H., Zhang, F., Hou, Y., and Teng, F., Nanotechnology, 2013, vol. 24, no. 35, art. 355602.Google Scholar
  2. 2.
    Sadovnikov, S.I. and Gusev, A.I., J. Mater. Chem. A, 2017, vol. 5, no. 34, pp. 17676–17704.CrossRefGoogle Scholar
  3. 3.
    Sadovnikov, S.I., Rempel, A.A., and Gusev, A.I., Nanostructured Lead, Cadmium and Silver Sulfides: Structure, Nonstoichiometry and Properties, Cham; Heidelberg: Springer, 2018.CrossRefGoogle Scholar
  4. 4.
    Liang, C.H., Terabe, K., Hasegawa, T., and Aono, M., Nanotechnology, 2007, vol. 18, no. 48, art. 485202.Google Scholar
  5. 5.
    Sadovnikov, S.I., Rempel, A.A., and Gusev, A.I., Russ. Chem. Rev., 2018, vol. 87, no. 4, pp. 303–327.CrossRefGoogle Scholar
  6. 6.
    Basu, M., Nazir, R., Mahala, C., Fageria, P., Chaudhary, S., Gangopadhyay, S., and Pande, S., Langmuir, 2017, vol. 33, no. 13, pp. 3178–3186.CrossRefGoogle Scholar
  7. 7.
    Sadovnikov, S.I., Kozlova, E.A., Gerasimov, E.Yu., Rempel, A.A., and Gusev, A.I., Int. J. Hydrogen Energy, 2017, vol. 42, no. 40, pp. 25258–25266.CrossRefGoogle Scholar
  8. 8.
    Jawhari, T., Analysis, 2000, vol. 28, no. 1, pp. 15–22.Google Scholar
  9. 9.
    Strekalovskii, V.N., Vovkotrub, E.G., and Salyulev, A.B., Analit. Kontr., 2000, vol. 4, no. 44, pp. 334–338.Google Scholar
  10. 10.
    Sadovnikov, S.I., Gusev, A.I., and Rempel, A.A., Phys. Chem. Chem. Phys., 2015, vol. 17, no. 19, pp. 12466–12471.CrossRefGoogle Scholar
  11. 11.
    Martina, I., Wiesinger, R., Jembrih-Simburger, D., and Schreiner, M., e-Preserv. Sci., 2012, vol. 9, pp. 1–8.Google Scholar
  12. 12.
    Lee, J.I., Howard, S.M., Kellar, J.J., Han, K.N., and Cross, W., Met. Mater. Trans. B, 2001, vol. 32, no. 5, pp. 895–901.CrossRefGoogle Scholar
  13. 13.
    Belov, A.N., Pyatilova, O.V., and Vorobiev, M.I., Adv. Nanopart., 2014, vol. 3, pp. 1–4.CrossRefGoogle Scholar
  14. 14.
    Delgado-Beleno, Y., Cortez-Valadez, M., Martinez-Nunez, C.E., Britto Hurtado, R., Alvarez Ramon, A.B., Rocha-Rocha, O., Arizpe-Chavez, H., Perez-Rodriguez, A., and Flores-Acosta, M., Chem. Phys., 2015, vol. 463, pp. 106–110.CrossRefGoogle Scholar
  15. 15.
    Hashmi, L., Sana, P., Malik, M.M., Siddiqui, A.H., and Qureshi, M.S., Nano Hybrids, 2012, vol. 1, pp. 23–43.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. I. Sadovnikov
    • 1
  • E. G. Vovkotrub
    • 2
  • A. A. Rempel
    • 1
  1. 1.Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations