Doklady Physical Chemistry

, Volume 470, Issue 1, pp 125–128 | Cite as

The effect of hydrogen adsorption on the electronic structure of gold nanoparticles

  • A. K. Gatin
  • M. V. Grishin
  • N. V. Dokhlikova
  • N. N. Kolchenko
  • B. R. Shub
Physical Chemistry


It has been demonstrated that hydrogen adsorption has an effect on the electronic structure of gold nanoparticles. The physicochemical properties of separate gold nanoparticles have been studied under an ultrahigh vacuum scanning tunneling microscope. The structure and electronic structure of gold–hydrogen clusters were modeled by the quantum-chemical density functional theory method. Hydrogen adsorption onto gold nanoparticles 4–5 nm is size at room temperature was experimentally revealed, and the lower limit of 1.7 eV for the Au–H bond energy was determined. The interaction of hydrogen with gold leads to a considerable rearrangement of the electronic subsystem of nanoparticles. The experimentally observed effects were supported by quantum-chemical calculations. The rearrangement mechanism is related to strong correlations in the electronic subsystem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haruta, M., Kobayashi, T., Sano, H., and Yamada, N., Chem. Lett., 1987, pp. 405–408.Google Scholar
  2. 2.
    Volokitin, Y., Sinzig, J., de Jongh, L.J., Schmid, G., Vargaftik, M.N., and Moiseev, I.I., Nature, 1996, vol. 384, pp. 621–623.CrossRefGoogle Scholar
  3. 3.
    Bukhtiyarov, V.I. and Slin’ko, M.G., Usp. Khim., vol. 70, no. 2, pp. 167–181.Google Scholar
  4. 4.
    Rostovshchikova, T.N., Smirnov, V.V., Kozhevin, V.M., Yavsin, D.A., and Gurevich, S.A., Ros. Nanotekhnol., 2007, vol. 2, no. 1/2, pp. 47–60.Google Scholar
  5. 5.
    Binnig, G., Rohrer, H., Berber, C., and Weibel, E., Appl. Phys. Lett., 1981, vol. 40, no. 2, pp. 178–179.CrossRefGoogle Scholar
  6. 6.
    Meyer, E., Hug, H.J., and Bennewitz, R., Scanning Probe Microscopy, Berlin: Springer, 2004.CrossRefGoogle Scholar
  7. 7.
    Hamers, R.J., Tromp, R.M., and Demuth, J.E., Phys. Rev. Lett., 1986, vol. 56, no. 18, pp. 1972–1975.CrossRefGoogle Scholar
  8. 8.
    Hamers, R.J. and Wang, Y.J., Chem. Rev., 1996, vol. 96, no. 4, pp. 1261–1290.CrossRefGoogle Scholar
  9. 9.
    Ozaki, T., Phys. Rev. B, 2003, vol. 67, p. 155108.CrossRefGoogle Scholar
  10. 10.
    Ng, K.K., Zhang, F.C., Anisimov, V.I., and Rice, T.M., Phys. Rev. B, 1999, vol. 59, pp. 5398–5413.CrossRefGoogle Scholar
  11. 11.
    Karazhanov, S.Zh., Ulyashin, A.G., Vajeeston, P., and Ravindran, P., Philos. Mag., 2008, vol. 88, no. 16, pp. 2461–2476.CrossRefGoogle Scholar
  12. 12.
    Silverwood, I.P., Rogers, S.M., Callear, S.K., Parker, S.F., and Catlow, C.R.A., Chem. Commun., 2016, vol. 52, pp. 533–536.CrossRefGoogle Scholar
  13. 13.
    Gatin, A.K., Grishin, M.V., Gurevich, S.A., Dokhlikova, N.V., Kirsankin, A.A., Kozhevin, V.M., Kolchenko, N.N., Rostovshchikova, T.N., Kharitonov, V.A., Shub, B.R., and Yavsin, D.A., Izv. Akad. Nauk, Ser. Khim., 2014, no. 8, pp. 1696–1702.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. K. Gatin
    • 1
  • M. V. Grishin
    • 1
  • N. V. Dokhlikova
    • 1
  • N. N. Kolchenko
    • 1
  • B. R. Shub
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations