Doklady Physical Chemistry

, Volume 467, Issue 2, pp 53–55 | Cite as

Hexagonal → cholesteric phase transition of DNA molecules in liquid-crystalline dispersion particles

  • Yu. M. Yevdokimov
  • S. G. Skuridin
  • V. I. Salyanov
  • E. I. Katz
Physical Chemistry

Abstract

To assess the character of packing of double-stranded (ds) DNA molecules in liquid-crystalline dispersion particles formed by phase exclusion of DNA molecules from aqueous salt solutions of poly(ethylene glycol), the circular dichroism spectra of these dispersions at different temperatures have been compared. It has been shown for the first time that heating dispersion particles with the hexagonal packing of ds-DNA molecules is accompanied by the hexagonal → cholesteric phase transition. This result can be described using the notion of quasi-nematic layers composed of orientationally ordered adjacent ds-DNA molecules in the structure of dispersion particles; these layers can be packed in two ways dictating their hexagonal or cholesteric spatial structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grosberg, A.Yu. and Khokhlov, A.R., Statisticheskaya fizika makromolekul (Statistical Physics of Macromolecules), Moscow: Nauka, 1989.Google Scholar
  2. 2.
    Yevdokimov, Yu.M., Salyanov, V.I., Semenov, S.V., and Skuridin, S.G., DNA Liquid-Crystalline Dispersions and Nanoconstructions, Boca Raton, London, New York: CRC Press/Taylor & Francis Group, 2011.CrossRefGoogle Scholar
  3. 3.
    Evdokimov, Yu.M., Salyanov, V.I., Savateev, M.N., et al., Tekhnol. Zhivykh Sist., 2013, vol. 10, no. 1, pp. 20–27.Google Scholar
  4. 4.
    Yevdokimov, Yu.M., Salyanov, V.I., Skuridin, S.G., et al., The CD Spectra of Double-Stranded DNA LiquidCrystalline Dispersions, New York: Nova Sci. Publ., 2011.Google Scholar
  5. 5.
    Livolant, F. and Leforestier, A., Prog. Polym. Sci., 1996, vol. 21, no. 6, pp. 1115–1164.CrossRefGoogle Scholar
  6. 6.
    Livolant, F., Levelut, A.M., Doucet, J., and Benoit, J.P., Nature, 1989, vol. 339, no. 6227, pp. 724–726.CrossRefGoogle Scholar
  7. 7.
    Evdokimov, Yu.M., Pyatigorskaya, T.L., Belozerskaya, N.A., et al., Mol. Biol., 1977, vol. 11, no. 3, pp. 507–515.Google Scholar
  8. 8.
    Yevdokimov, Yu.M., Skuridin, S.G., and Lortkipanidze, G.B., Liq. Cryst., 1992, vol. 12, no. 1, pp. 1–16.CrossRefGoogle Scholar
  9. 9.
    Papkov, S.P. and Kulichikhin, V.G., Zhidkokristallicheskoe sostoyanie polimerov (Liquid-Crystalline State of Polymers), Moscow: Khimiya, 1977.Google Scholar
  10. 10.
    Gautier, A., Michel-Salamin, L., Tosi-Couture, E., et al., J. Ultrastruct. Mol. Struct. Res., 1986, vol. 97, nos. 1/3, pp. 10–30.CrossRefGoogle Scholar
  11. 11.
    Nguyen, T.T., arXiv:, 1508.02085v1[q-bio.BM] 9 Aug 2015.Google Scholar
  12. 12.
    Chilaya, G.S. and Lisetskii, L.N., Usp. Fiz. Nauk, 1981, vol. 134, no. 2, pp. 279–304.CrossRefGoogle Scholar
  13. 13.
    Lindemann, F.A., Phys. Z., 1910, vol. 11, no. 14, pp. 609–612.Google Scholar
  14. 14.
    Kornyshev, A.A., Leikin, S., and Malinin, S.V., Eur. Phys. J. E, 2002, vol. 7, no. 1, pp. 83–93.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Yu. M. Yevdokimov
    • 1
  • S. G. Skuridin
    • 1
  • V. I. Salyanov
    • 1
  • E. I. Katz
    • 2
  1. 1.Engelgardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations