Doklady Chemistry

, Volume 484, Issue 1, pp 16–18 | Cite as

New Metal Oxide Composite Materials as Efficient Catalysts of Partial Oxidation of Methane

  • A. G. Dedov
  • O. A. Shlyakhtin
  • A. S. LoktevEmail author
  • G. N. Mazo
  • S. A. Malyshev
  • I. I. Moiseev


Single-phase complex oxides Nd2 – yCayCoxNi1 – xO4 have been synthesized for the first time. Composites prepared by the reduction of these compounds with hydrogen and containing Nd2O3, CaO, and cobalt and nickels metals have been used for the first time as catalysts of the partial oxidation of methane. The maximal methane conversions (97%) and syngas yields (96%) at 900°С have been detected in the presence of the composite obtained from Nd1.5Ca0.5NiO4. At T < 850°C, the nickel–cobalt composite synthesized from Nd1.3Ca0.7Co0.4Ni0.6O4 turned out to be more selective in the formation of syngas. Decreasing the partial oxidation temperature from 900 to 750°С leads to the oxidation of metallic nickel and cobalt to oxides and to partial resynthesis of complex oxides with perovskite and K2NiF4 structures. The observed differences in temperature dependence of the catalytic properties of composites with various Ni/Co ratios can be associated with the participation of complex oxides in catalysis of the partial oxidation of methane at low temperatures.



This work was supported by the Russian Science Foundation (project no. 14–13–01007) and State assignment “Leading Researchers on the Ongoing Basis” (project no. 4.6718.2017/6.7 (Application no. 1422).


  1. 1.
    Enger, B.C., Lodeng, R., and Holmen, A., Appl. Catal., A, 2008, vol. 346, pp. 1–27.Google Scholar
  2. 2.
    Arku, P., Regmi, B., and Dutta, A., Chem. Eng. Res. Des., 2018, vol. 136, pp. 385–402.CrossRefGoogle Scholar
  3. 3.
    Horn, R. and Schlö gl, R., Catal. Lett., 2015, vol. 145, pp. 23–39.CrossRefGoogle Scholar
  4. 4.
    Swaan, H.M., Rouanet, R., Wydiananda, P., and Mirodatos, C., Stud. Surf. Sci. Catal., 1997, vol. 107, pp. 447–453.CrossRefGoogle Scholar
  5. 5.
    Au, C.T., Hu, Y.H., and Wan, H.L., Catal. Lett., 1994, vol. 27, pp. 199–206.CrossRefGoogle Scholar
  6. 6.
    Choudhary, V.R., Sansare, S.D., and Mamman, A.S., Appl. Catal., A, 1992, vol. 90, pp. L1–L5.Google Scholar
  7. 7.
    Choudhary, V.R., Rane, V.H., and Rajput, A.M., Catal. Lett., 1993, vol. 22, pp. 289–297.CrossRefGoogle Scholar
  8. 8.
    Dong, W.-S., Jun, K.-W., Roh, H.-S., Liu, Z.-W., and Park, S.-E., Catal. Lett., 2002, vol. 78, p. 222.CrossRefGoogle Scholar
  9. 9.
    Dedov, A.G., Loktev, A.S., Komissarenko, D.A., Mazo, G.N., Shlyakhtin, O.A., et al., Appl. Catal A, 2015, vol. 489, pp. 140–146.CrossRefGoogle Scholar
  10. 10.
    Dedov, A.G., Loktev, A.S., Komissarenko, D.A., et al., Fuel Process. Technol., 2016, vol. 148, pp. 128–137.CrossRefGoogle Scholar
  11. 11.
    Silva, C.R.B., Conciecao, L., Ribeiro, N.F.P., and Souza, M.M.V.M., Catal. Commun., 2011, vol. 12, pp. 665–668.CrossRefGoogle Scholar
  12. 12.
    Lago, R., Bini, G., Pena, M.A., and Fierro, J.L.G., J. Catal., 1997, vol. 167, pp. 198–209.CrossRefGoogle Scholar
  13. 13.
    Dedov, A.G., Loktev, A.S., Mazo, G.N., et al., Dokl. Phys. Chem., 2011, vol. 441, part 2, pp. 233–236.CrossRefGoogle Scholar
  14. 14.
    Dedov, A.G., Shlyakhtin, O.A., Loktev, A.S., Mazo,  G.N., Malyshev, S.A., et al., Dokl. Phys. Chem., 2017, vol. 477, part 2, pp. 209–211.CrossRefGoogle Scholar
  15. 15.
    Fernandez Guillermet, A., The Co–Ni System, 1987. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. G. Dedov
    • 1
  • O. A. Shlyakhtin
    • 2
  • A. S. Loktev
    • 1
    Email author
  • G. N. Mazo
    • 2
  • S. A. Malyshev
    • 2
  • I. I. Moiseev
    • 1
  1. 1.National University of Oil and Gas “Gubkin University”MoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations