Advertisement

Doklady Chemistry

, Volume 483, Issue 2, pp 318–322 | Cite as

Effect of Production Conditions on the Size of Copper Nanoparticles and the Modes of Ignition and Combustion of a Copper Nanopowder in Air

  • M. I. Alymov
  • N. M. RubtsovEmail author
  • B. S. Seplyarskii
  • V. A. Zelenskii
  • A. B. Ankudinov
  • G. I. Tsvetkov
  • V. I. Chernysh
CHEMICAL TECHNOLOGY
  • 5 Downloads

Abstract

Copper nanoparticles were produced by a chemical metallurgical method and by the thermal decomposition of copper citrate and formate. It was shown that the copper nanopowder obtained from copper citrate is not pyrophoric. Combustion of this copper nanopowder can be initiated by an external source, and the combustion wave velocity is 1.3 ± 0.3 mm/s. The specific surface area (45 ± 5 m2/g) of the copper nanopowder obtained from copper citrate is almost four times as large as that of the nanopowder produced by a chemical metallurgical method. The former nanopowder contains almost no oxides and is stable in atmospheric air, whereas the latter nanopowder is pyrophoric and, therefore, requires passivation, but its passivation gives rise to noticeable amounts of copper oxides. The combustion velocities of the passivated and unpassivated copper nanopowders are almost equal and are 0.3 ± 0.04 mm/s. The dynamics of the temperature fields in ignition and combustion of the copper nanopowders obtained by different methods was studied.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 16–13–00013).

REFERENCES

  1. 1.
    Zijlstra, M. and Orrit, M., Rep. Progr. Phys., 2011, vol. 74, no. 10, p. 106401.CrossRefGoogle Scholar
  2. 2.
    Kamyshny, A., Steinke, J., and Magdassi, S., Open Appl. Phys. J., 2011, vol. 4, pp. 19–36.Google Scholar
  3. 3.
    Gréget, R., Nealon, G.L., Vileno, B., Turek, P., Mény, C., Ott, F., Derory, A., Voirin, E., Rivière, E., and Rogalev, A., ChemPhysChem, 2012, vol. 13, pp. 3092–3097.CrossRefGoogle Scholar
  4. 4.
    Letfullin, R.R., Iversen, C.B., and George, T.F., Nanomed.: Nanotech., Bio. Med., 2011, vol. 7, pp. 137–145.CrossRefGoogle Scholar
  5. 5.
    Wei, Y., Chen, S., Kowalczyk, B., Huda, S., Gray, T.P., and Grzybowski, B.A., J. Phys. Chem. C, 2010, vol. 114, pp. 15612–15616.CrossRefGoogle Scholar
  6. 6.
    Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., and Rahuman, A., Mater. Lett., 2012, vol. 71, p. 114–116.CrossRefGoogle Scholar
  7. 7.
    Dhas, N.A., Raj, C.P., and Gedanken, A., Chem. Mater., 1998, vol. 10, no. 5, pp. 1446–1452.CrossRefGoogle Scholar
  8. 8.
    Hashemipour, H., Zadeh, M.E., Pourakbari, R., and Rahimi, P., Int. J. Phys. Sci., 2011, vol. 6, pp. 4331–4336.Google Scholar
  9. 9.
    Salavati-Niasari, M. and Davar, F., Mater. Lett., 2009, vol. 63, pp. 441–443.CrossRefGoogle Scholar
  10. 10.
    Park, B.K., Kim, D., Jeong, S., Moon, J., and Kim, J.S., Thin Solid Films, 2007, vol. 515, pp. 7706–7711.CrossRefGoogle Scholar
  11. 11.
    Alzahrani, E. and Ahmed, R.A., Int. J. Electrochem. Sci., 2016, vol. 11, pp. 4712–4723.CrossRefGoogle Scholar
  12. 12.
    Tian, K., Liu, C., Yang, H., and Ren, X., Colloid. Surf. A: Physicochem. Eng. Aspects, 2012, vol. 397, pp. 12–25.CrossRefGoogle Scholar
  13. 13.
    Alymov, M.I., Rubtsov, N.M., Seplyarsky, B.S., Zelensky, V.A., and Ankudinov, A.B., Mendeleev Communs., 2016, vol. 26, pp. 452–454.CrossRefGoogle Scholar
  14. 14.
    Gorrie, T.M., Kopf, P.W., and Toby, S., J. Phys. Chem., 1967, vol. 71, no. 12, pp. 3842–3845.CrossRefGoogle Scholar
  15. 15.
    Sharma, B.K., Objective Question Bank in Chemistry, India: Krishns and Prakashan Media, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. I. Alymov
    • 1
  • N. M. Rubtsov
    • 1
    Email author
  • B. S. Seplyarskii
    • 1
  • V. A. Zelenskii
    • 1
  • A. B. Ankudinov
    • 2
  • G. I. Tsvetkov
    • 1
  • V. I. Chernysh
    • 1
  1. 1.Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations