Doklady Chemistry

, Volume 483, Issue 2, pp 297–300 | Cite as

Synthesis and Structure of New Water-Soluble Ag(I) and Pb(II) Complexes with Sulfonyl-Substituted Derivatives of the closo-Decaborate Anion

  • E. A. MalininaEmail author
  • S. E. Korolenko
  • L. V. GoevaEmail author
  • N. T. Kuznetsov


The  reactivity  of  sulfonyl-substituted  closo-decaborate  derivatives  (the  [2-B10H9SH]2–  and [2-B10H9S(CН2C(О)NН2)2] anions) in the complexation of Ag(I) and Pb(II), Pearson soft acids, in the presence of competitive organic ligands has been studied. The substituted derivatives act as bridging ligands to form silver(I) binuclear complexes [(Ag(bipy)2)2(2-B10H9SH)] and [(Ag(bipy)2)2(2-B10H9S(CН2C(О)NН2)2]NO3; the [2-B10H9SH]2– anion is involved in the lead(II) coordination polyhedron in the [Pb(2-B10H9SH)] and [Pb(bipy)2(2-B10H9SH)] complexes; in [Pb(bipy)2][2-B10H9S(CН2C(О)NН2)2]2, the substituted decaborate derivative acts as a counterion. The solubility of the mixed-ligand complexes is different due to the variety of their structures. The synthesized complexes are the first water-soluble lead and silver compounds with the closo-decaborate anion.



This work was supported by the Council of the President of the Russian Federation for State Support of Leading Scientific Schools (project no. NSh-2845.2018.3).


  1. 1.
    Sivaev, I.B. and Bregadze, V.V., Eur. J. Inorg. Chem., 2009, vol. 11, p. 1433.CrossRefGoogle Scholar
  2. 2.
    Ivanov, S.V., Ivanova, S.M., Miller, S.M., Anderson, O.P., Solntsev, K.A., and Strauss, S.H., Inorg. Chem., 1996, vol. 35, p. 6914.CrossRefGoogle Scholar
  3. 3.
    Avdeeva, V.V., Polyakova, I.N., Vologzhanina, A.V., Malinina, E.A., Zhizhin, K.Yu., and Kuznetsov, N.T., Polyhedron, 2017, vol. 123, p. 396.CrossRefGoogle Scholar
  4. 4.
    Zhizhin, K.Yu., Vovk, O.O., Malinina, E.A., Mustyatsa, L.V. Goeva, L.V., Polyakova, I.N., and Kuznetsov, N.T., Russ. J. Coord. Chem., 2011, vol. 27, no. 9, pp. 653–658.Google Scholar
  5. 5.
    Zhizhin, K.Yu., Malinina, E.A., Polyakova, I.N., Lisovskii, M.V., et al., Russ. J. Inorg. Chem., 2002, vol. 47, no. 8, pp. 1158–1167.Google Scholar
  6. 6.
    Zhizhin, K.Yu., Mustyatsa, V.N., Malinina, E.A., Matveev, E.Yu., et al., Russ. J. Inorg. Chem., 2005, vol. 50, no. 2, pp. 203—209.Google Scholar
  7. 7.
    Zhizhin, K.Yu., Malinina, E.A., Goeva, L.V., Chernyavskii, S.A., Ivanov, S.V., Luk’yanets, E.A., Solntsev, K.A., and Kuznetsov, N.T., Dokl. Akad. Nauk, 1997, vol. 357, no. 2, p. 206.Google Scholar
  8. 8.
    Orlova, A.M., Sivaev, I.B., Lagun, V.L., Solntsev, K.A., and Kuznetsov, N.T., Koord. Khim., 1993, vol. 19, p. 116.Google Scholar
  9. 9.
    Ochertyanova, L.I., Mustyatsa, V.N., Belousova, O.N., Zhizhin, K.Yu., and Kuznetsov, N.T., Inorg. Mater., 2004, vol. 40, no. 2, pp. 144—146.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations