Doklady Chemistry

, Volume 483, Issue 2, pp 312–317 | Cite as

Plasma Spheroidization of Micropowders of a Heat-Resistant Alloy Based on Nickel Monoaluminide

  • Yu. V. Tsvetkov
  • A. V. SamokhinEmail author
  • N. V. Alekseev
  • A. A. Fadeev
  • M. A. Sinaiskii
  • E. A. Levashov
  • Yu. Yu. Kaplanskii


Spheroidization of micropowders of a heat-resistant alloy based on nickel aluminide with a particle size of 20 to 45 μm was studied. The alloy was produced by calcium hydride reduction (CHR) and elemental synthesis (SHS). The spheroidization was carried out in a flow of argon–hydrogen thermal plasma generated by a direct-current (DC) plasma torch. The degree of spheroidization of the micropowders reached 98.5%, and the flowability was 20 s/50 g.



This work was supported by the Federal Target Program “Research and Development in Priority Areas of Development of the Science and Technology Sector of Russia for 2014–2020” (unique project identifier RFMEFI57817X0260, agreement no. 14.578.21.0260).


  1. 1.
    Campbell, F.C., Manufacturing Technology for Aerospace Structural Materials, London: Elsevier, 2011.Google Scholar
  2. 2.
    Bochenek, K. and Basista, M., Progr. Aerospace Sci., 2015, vol. 79, pp. 136–146.CrossRefGoogle Scholar
  3. 3.
    Zaitsev, A.A., Sentyurina, Zh.A., Pogozhev, Yu.S., et al., Izv. Vyssh. Uchebn. Zaved., Tsvet. Metallurg., 2015, no. 4, pp. 15–24.Google Scholar
  4. 4.
    Yang, L., Hsu, K., Baughman, B., et al., Additive Manufacturing of Metals: The Technology, Materials, Design and Production, Springer Series in Advanced Manufacturing, Berlin: Springer, 2017.Google Scholar
  5. 5.
    Vert, R., Pontone, R., Dolbec, R., Dionne, L., and Boulos, M.I., 22nd International Symposium on Plasma Chemistry, Antwerp, 2015, P-II-7-32.Google Scholar
  6. 6.
    Boulos, M., Met. Powder Rep., 2004, vol. 59, no. 5, pp. 16–21.CrossRefGoogle Scholar
  7. 7.
    Zaitsev, A.A., Sentyurina, Zh.A., Levashov, E.A., et al., Mater. Sci. Eng. A, 2017, vol. 690, pp. 463–472.CrossRefGoogle Scholar
  8. 8.
    Zaitsev, A.A., Sentyurina, Zh.A., Levashov, E.A., et al., Mater. Sci. Eng. A, 2017, vol. 690, pp. 473–481.CrossRefGoogle Scholar
  9. 9.
    Particle Size Analysis, Data Correlation Between Analytical Methods, 2012, Horiba Particle Characterization. https:\\ Scholar
  10. 10.
    Webb, P.A., Interpretation of Particle Size Reported by Different Analytical Techniques, Micromeritics Instrument Corp. Scholar
  11. 11.
    Hogg, R., KONA Powder Particle J., 2008, no. 26, pp. 81–93.Google Scholar
  12. 12.
    Kaplanskii, Yu.Yu., Zaitsev, A.A., Levashov, E.A., et al., Mater. Sci. Eng. A, 2018, vol. 717, pp. 48–59.CrossRefGoogle Scholar
  13. 13.
    Kaplanskii, Yu.Yu., Korotitskiy, A.V., Levashov, E.A., Sentyurina, Zh.A., Loginov, P.A., Samokhin, A.V., and Logachev, I.A., Mater. Sci. Eng. A, 2018, vol. 729, pp. 398–410.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Yu. V. Tsvetkov
    • 1
  • A. V. Samokhin
    • 1
    Email author
  • N. V. Alekseev
    • 1
  • A. A. Fadeev
    • 1
  • M. A. Sinaiskii
    • 1
  • E. A. Levashov
    • 2
  • Yu. Yu. Kaplanskii
    • 2
  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia
  2. 2.MISiS National Research Technological University MoscowRussia

Personalised recommendations