Doklady Chemistry

, Volume 483, Issue 2, pp 293–296 | Cite as

Diastereoselective Acylation of Racemic Heterocyclic Amines with N-Phthaloyl and N-Naphthaloyl (S)-Amino Acyl Chlorides: Possibility of Parallel Kinetic Resolution

  • D. A. Gruzdev
  • E. N. Chulakov
  • L. Sh. Sadretdinova
  • G. L. LevitEmail author
  • V. P. KrasnovEmail author
  • V. N. Charushin


The acylative kinetic resolution of racemic 2-methyl-1,2,3,4-tetrahydroquinoline and 3,4-dihydro-3-methyl-2H-[1,4]benzoxazines with acyl chlorides of N-naphthaloyl-(S)-alanine and N-naphthaloyl-(S)-phenylalanine has been studied. It has been shown that diastereoselective acylation of racemic amines with N-naphthaloyl (S)-amino acyl chlorides results in the predominant formation of (R,S)-amides, whereas acylation of the same amines with N-phthaloyl (S)-amino acyl chlorides proceeds with the opposite diastereoselectivity. The parallel kinetic resolution of racemic 3,4-dihydro-3-methyl-2H-[1,4]benzoxazine using a mixture of acylating agents derived from a single precursor, (S)-phenylalanine, was carried out.



The work was supported by the Russian Science Foundation (project no. 14–13–01077). Equipment of the Center for Joint Use “Spectroscopy and Analysis of Organic Compounds” at the Postovsky Institute of Organic Synthesis, UB RAS, was used.


  1. 1.
    Maddani, M.R., Fiaud, J.-C., and Kagan, H.B., in: Separation of Enantiomers: Synthetic Methods, Todd, M., ed., Weinheim: Wiley, 2014, pp. 13–74.Google Scholar
  2. 2.
    Krasnov, V.P., Gruzdev, D.A., and Levit, G.L., Eur. J. Org. Chem., 2012, pp. 1471–1493.Google Scholar
  3. 3.
    Kagan, H.B., Tetrahedron, 2001, vol. 57, pp. 2449–2468.CrossRefGoogle Scholar
  4. 4.
    Keith, J.M., Larrow, J.F., and Jacobsen, E.N., Adv. Synth. Catal., 2001, vol. 343, pp. 5–26.CrossRefGoogle Scholar
  5. 5.
    Pellissier, H., Chirality from Dynamic Kinetic Resolution, Cambridge: RSC Publishing, 2011.Google Scholar
  6. 6.
    Russell, T.A. and Vedejs, E., in Separation of Enantiomers: Synthetic Methods, Todd, M., ed., Weinheim: Wiley, 2014, pp. 217–266.Google Scholar
  7. 7.
    Gruzdev, D.A., Levit, G.L., Krasnov, V.P., et al., Tetrahedron: Asymmetry, 2010, vol. 21, pp. 936–942.CrossRefGoogle Scholar
  8. 8.
    Levit, G.L., Gruzdev, D.A., Krasnov, V.P., et al., Tetrahedron: Asymmetry, 2011, vol. 22, pp. 185–189.CrossRefGoogle Scholar
  9. 9.
    Gruzdev, D.A., Chulakov, E.N., Levit, G.L., et al., Tetrahedron: Asymmetry, 2013, vol. 24, pp. 1240–1246.CrossRefGoogle Scholar
  10. 10.
    Gruzdev, D.A., Vakarov, S.A., Levit, G.L., and Krasnov, V.P., Chem. Heterocycl. Compd., 2014, vol. 49, pp. 1795–1807.CrossRefGoogle Scholar
  11. 11.
    Vakarov, S.A., Gruzdev, D.A., Sadretdinova, L.Sh., et al., Tetrahedron: Asymmetry, 2015, vol. 26, pp. 312–319.CrossRefGoogle Scholar
  12. 12.
    Vakarov, S.A., Gruzdev, D.A., Chulakov, E.N., et al., Tetrahedron: Asymmetry, 2016, vol. 27, pp. 1231–1237.CrossRefGoogle Scholar
  13. 13.
    Jursic, B.S. and Patel, P.K., Tetrahedron, 2005, vol. 61, pp. 919–926.CrossRefGoogle Scholar
  14. 14.
    Szöllösi, G., Cserényi, S., and Bartók, M., Catal. Lett., 2010, vol. 134, pp. 264–269.CrossRefGoogle Scholar
  15. 15.
    Al-Sehemi, A.G., Atkinson, R.S., and Meades, C.K., Chem. Commun., 2001, pp. 2684–2685.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. A. Gruzdev
    • 1
    • 2
  • E. N. Chulakov
    • 1
  • L. Sh. Sadretdinova
    • 1
  • G. L. Levit
    • 1
    • 2
    Email author
  • V. P. Krasnov
    • 1
    • 2
    Email author
  • V. N. Charushin
    • 1
    • 2
  1. 1.Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal University Named after the First President of Russia B.N. EltsinYekaterinburgRussia

Personalised recommendations